Thermal & Structural Coupling

HOME / Applications / Thermal & Structural Coupling

Multi-Physics Capabilities

EMS is a true multi-physics software and simulation package.  It enables you to couple your magnet, magnetic, and electrical design to Thermal, Structural, and Motion analyses on the same model and mesh in a hassle-free integrated environment without any need to import, export any data.  This integrated multi-physics environment means no cluttering, no jumping around, no mishmashing, no chaos, no confusion, and no mess.  It also means: efficiency, accuracy, and productivity.   

Electro-Thermal Analysis

Your design involves electro-thermal aspects? Easy and hands-free! Just check "Couple to thermal"  steady-state or transient in the study properties.  EMS automatically computes the joule, eddy, and core losses and feeds them into the thermal solver.  You may readily add non-electromagnetic heat loadings by applying volume heat, heat flux, or simply fixed temperature.  Taking into account the environment conditions such as convection and radiation, EMS thermal steady-state or transient computes the temperature, temperature gradient, and heat flux and saves them to "Thermal Results" folder.   

Magneto-Structural Analysis

By the same token, the electro-mechanical coupling is also easy and hands-free.  The "Couple to structural" option invokes the EMS structural solver, after transferring the local force distribution in relevant parts in addition to the mechanical loads and constraints, and then computes the displacements.  The stress and strain are deduced subsequently and added to the "Structural Results" folder as well.   If the more general electro-thermo-mechanical coupling is desired, EMS transfers both the thermal and structural loads to the Thermal and Structural solvers.  The Thermal solver, in turn, feeds the thermal loads to the Structural solver which computes the final displacements that reflect both the electromagnetic and the thermal loads while taking into account the magnetic, electrical, thermal, and structural environments.