VOLLSTÄNDIGE SIMULATION
EMS logo

Elektromagnetische Simulation
Die magnetische und elektrische Feld- und Kraftmodellierungssoftware

Modellierung und Simulation von magnetischen und elektrischen Feldern

EMS ist eine Software zur Modellierung und Simulation von magnetischen und elektrischen Feldern. Es ist ein vielseitiges elektromagnetisches Konstruktionswerkzeug, da es das magnetische und elektrische Feld, den elektrischen Fluss, das elektrische Potential, die Spannung, den Strom, die magnetische Kraft, die elektrische Kraft, das Drehmoment, den Wirbelstrom und die Verluste, den Widerstand, die Induktivität, die Kapazität, den Skin-Effekt, den Proximity-Effekt und elektromagnetische Induktion berechnet. Die Anwendungen umfassen Transformatoren, Fahrzeugindustrie, Elektromotoren, Wirbelstrom, Sensoren, NDT, NDE, elektrische Maschinen, Isolatoren, Hochspannungsanlagen, Magnetanordnungen, Biomedizin-Anwendungen und Erhitzen durch Induktion. Sie bietet eine hohe Genauigkeit und Leistungsfähigkeit durch die Finite-Elemente-Methode und einer modernen Vernetzungstechnologie. Ob Ihr bevorzugtes CAD-System SOLIDWORKS®, Autodesk® Inventor® oder SpaceClaim ist, EMS ist Ihr unverzichtbarer elektromagnetischer Begleiter. Darüber hinaus ist EMS von der SOLIDWORKS® Corporation Gold-zertifiziert. EMS löst die grundlegenden Maxwell-Gleichungen direkt. Folglich kann es problemlos als Transformatorentwurfssoftware, als Elektromotorentwurfssoftware, als parasitärer RLC-Extraktor, als NDT-Simulationssoftware, als Hochspannungs- und Hochleistungssimulationssoftware und mehr verwendet werden. Diese Vielseitigkeit wird weiter unten erläutert.

Eine Transformer-Software und ein Rechner

EMS kann als Transformatorsoftware verwendet werden. Mit EMS können kritische Parameter des Transformatorentwurfs virtuell untersucht werden, darunter:

Energiespeicher

Ein Transformator soll keine Energie speichern, sondern sie sofort vom Eingang zum Ausgang übertragen. Leider speichern Transformatoren in der Realität unerwünschte Energie. EMS berechnet die Streuinduktivität, die die gespeicherte Energie zwischen Wicklungsbereichen darstellt, die von nichtmagnetischen Medien belegt sind. In ähnlicher Weise berechnet EMS die gegenseitigen Induktivitäten,  welche ein Maß für die unerwünschte gespeicherte Energie im Magnetkern und in kleinen Luftspalten darstellt.

Verluste und Wärmemanagement

EMS kann den maximalen "Hot Spot" -Temperaturanstieg an der Kernoberfläche im Zentrum der Wicklungen berechnen. Diese Berechnung ist hilfreich, um die kleinste Kerngröße zu bestimmen, die den erforderlichen Wirkungsgrad der Stromversorgung erfüllt, ohne die maximale "Hot Spot" -Temperatur zu überschreiten. Um diesen Temperaturanstieg zu berechnen, berücksichtigt EMS alle Transformatorverluste, einschließlich Wirbelverlust, Hystereseverlust, Kernverlust, Wicklungsverlust und Wärmeverlust sowie die Umgebungstemperatur der Flüssigkeit und die Konvektionseigenschaften.

Kernauswahl

EMS berechnet die magnetische Flussdichte und das Sättigungsniveau im Kern, was bei der Auswahl des richtigen Kernmaterials, der Form und der Größe für jede Frequenz und gewünschte Leistung helfen kann. Der Konstrukteur des Transformators zielt letztlich darauf ab, eine Form zu wählen, die einfach herzustellen ist, eine möglichst geringe Kerngröße und das kostengünstigste Kernmaterial zu verwenden, wobei die erforderliche Leistung zu berücksichtigen ist, ohne den Kern zu sättigen.

Unterbrechungs- und Kurzschlusstests

Unterbrechungs- und Kurzschlusstests eines Transformators sind kritisch, aber kostspielig und zeitraubend. EMS ermöglicht dem Designer, diese Tests virtuell genau und effizient auszuführen.

Planung von Isolatoren

EMS berechnet den dielektrischen Durchbruch, der für die Auswahl der richtigen Durchführungen, Überspannungsableiter und anderer isolierender Infrastrukturen maßgeblich ist. Diese Art der Berechnung hilft dem Planer, die verschiedenen Normen für die Isolatoren zu erfüllen.

Kurzschlusskräfte

EMS berechnet die auf die Wicklungen und das Kernmaterial einwirkenden Kräfte sowie die durch diese Kräfte verursachten Beanspruchungen und strukturellen Verschiebungen. Diese Art von Berechnungen ist hilfreich bei der Gewährleistung der strukturellen Integrität des Transformators.

Eine Motorsoftware und ein Rechner

EMS kann als Motorkonstruktionssoftware verwendet werden und kann insbesondere dazu verwendet werden, kritische Parameter für die Konstruktion von Elektromotoren virtuell zu studieren, einschließlich:

Parameterschätzung

Induktivität und Widerstand einer Wicklung spielen eine wichtige Rolle bei der Steuerung und Zustandsschätzung von Elektromotoren. Ein Beispiel ist die Phasenstromsteuerung in einem SRM-Motor oder die Schätzung der Rotorposition in einem sensorlosen BLDC. EMS kann diese Parameterwerte für einen gewünschten Satz von Frequenz- und Strombedingungen bestimmen.

Probleme bei der 3D-Modellierung

EMS ist eine vollständige 3D-Modellierungsplattform. Dies ermöglicht die Simulation einiger wichtiger Topologien und Effekte, die sonst nicht zu analysieren sind:
Das Schwenken von Schlitzen oder Rotorpolen ist eine übliche Technik zur Reduzierung der Rastkraft. Ihre Ergebnisse können nur geschätzt werden, wenn die Wechselwirkung zwischen Stator und Rotor in allen drei Dimensionen erfasst wird.
- Fortschrittliche Maschinentopologien wie Axialfluss- und Transversalflussmaschinen arbeiten von Natur aus mit der 3D-Flussverteilung und sollten als solche behandelt werden.
- Endwicklungen haben einen erheblichen Einfluss auf den Wicklungswiderstand sowie auf die Streuinduktivität.

Drehmoment

EMS kann transiente und stationäre Drehmomentprofile für verschiedene Elektromaschinentopologien berechnen, z. B. Permanentmagnet-Wechselstrommaschine, BLDC, Reluktanz- und Induktionsmaschinen usw. Drehmomente für unterschiedliche Rotordrehzahlen und Ströme in den Wicklungen bestimmen die optimalen Betriebsbedingungen. Darüber hinaus hilft EMS dabei, das Rastmoment zu minimieren, indem es die Größe für verschiedene Luftspaltlängen oder Teilschlitzabstände vergleicht.

Kernmaterial

Der Erfolg einer Maschinenkonstruktion hängt von der genauen Darstellung nichtlinearer Phänomene im Kernmaterial ab, z. B. Sättigung des magnetischen Flusses, Wirbelstrom- und Hystereseverluste. EMS beinhaltet eine Bibliothek vordefinierter solider und laminierter Kernmaterialien. Der Designer kann verschiedene Materialien in Bezug auf Sättigung, Kernverluste und Gesamteffizienz leicht vergleichen. Kern- und Wicklungsverluste können mit dem thermischen Löser von EMS gekoppelt werden und bestimmen den Temperaturanstieg und damit die Kühlanforderungen.

Form und Größe

Maschinenradius, Länge und Anzahl der Pole bestimmen maßgeblich das Drehmoment und die Nennleistung. Feinere geometrische Merkmale des Magnetkreises haben jedoch einen tiefgreifenden Einfluss auf die Maschinenleistung. Beispielsweise beeinflusst die Form der Rotorstangen in einem Induktionsmotor, wie sich das Drehmoment mit dem Rotorschlupf ändert. Alle diese Parameter können innerhalb von EMS leicht variiert werden, um ihre Auswirkung auf die Leistung des Motors zu bewerten.

Parasitäre RLC-Extraktion

EMS kann als parasitärer RLC-Extraktor verwendet werden. Das heißt, es berechnet den Widerstand, die Induktivität und die Kapazität für jede beliebige 3D-Elektro- und Elektronikstruktur genau. Diese Berechnungen berücksichtigen den Proximity-Effekt, den Skin-Effekt, den dielektrischen und ohmschen Verlust sowie die Frequenzabhängigkeit. Mit anderen Worten, es werden sowohl parasitäre Gleichstrom- als auch Wechselstrom-RLC berechnet. Diese parasitären Werte sind für die Modellierung verschiedener elektrischer und elektronischer Geräte und Schaltungen von Bedeutung, darunter:

Hochgeschwindigkeitselektronik

RLC-Modelle für elektronische Hochgeschwindigkeitsgeräte wie ICs, PCBs, Packages und passive Komponenten auf dem Chip sind für die Untersuchung von Nebensprechen, Verzerrungen, Verbindungsverzögerungen sowie "ground bounce".

Stromrichter

RLC-Modelle eignen sich zur Simulation von elektronischen Geräten wie Stromschienen, Kabeln, Wechselrichtern und Wandlern, die häufig in Energieverteilungsanwendungen und in Hybrid- und Elektrofahrzeugen zum Einsatz kommen.

Touchscreen-Modellierung

Die Modellierung von Touchscreens, die heutzutage in Smartphones und Computern zu finden sind, hängt stark von der genauen Berechnung der Kapazität der Bildschirmkabel ab.

NDT-Simulationssoftware

Elektromagnetische Felder und Wellen werden in zerstörungsfreien Prüftechnologien häufig eingesetzt. Da EMS den magnetischen Fluss und den Wirbelstrom genau berechnet, deckt es eine Vielzahl von elektromagnetischen NDT-Techniken ab, darunter: Wirbelstromprüfung (ECT), Magnetflussverlust (MFL), Fernfeldprüfung (RFT), magnetische Teilchenprüfung (MPI). , Wirbelstrom (PEC) und die Wechselstromfeldmessung (ACFM). Beim NDT-Screening werden üblicherweise die NDT-Sonden bewegt. EMS ist gut geeignet, um diese Art von Bewegung zu modellieren, da EMS mit Solidworks Motion gekoppelt ist.

Nahtlose Integration von Solidworks und Autodesk Inventor

Durch die nahtlose Integration von EMS in die drei wichtigsten CAD-Plattformen können Sie die kompliziertesten elektrischen Maschinen, das sind Motoren, Generatoren, Sensoren, Transformatoren, das Hochspannungsanlagen, Hochleistungsmaschinen, elektrische Schalter, Ventile, Aktuatoren, PCB's, Schwebemaschinen, Lautsprecher, Permanentmagnetmaschinen, NDT-Ausrüstung, Wechselrichter, Umrichter, Stromschienen, Induktionsmashinen, Durchführungen oder biomedizinische Ausrüstung. Sie müssen das Rad nicht "neu erfinden", sondern erwerben einfach ein CAD-Modell von Ihrer Konstruktionsabteilung und starten Ihre Simulation sofort und ohne Änderung. Wenn Sie Änderungen an dem CAD-Modell vornehmen möchten, müssen Sie das Modell nicht neu konstruieren, da kommerzielle CAD-Pakete wie Solidworks parametrisch und hierarchisch sind. Ändern Sie es selbst "on the fly". Wenn die Konstruktionsabteilung oder die Kollegen ein anderes CAD-Paket verwenden, können Sie es höchstwahrscheinlich im Parasolid-, ACIS-, IGES-, STEP-, STL-, CATIA- oder ProE-Kernel speichern. Sie importieren es dann in SOLIDWORKS®, Autodesk® Inventor® oder Ansys SpaceClaim und setzen Ihren elektromagnetischen Entwurf fort.

Multi-Physics-Funktionen

EMS ist ein echtes Multiphysik-Software- und Simulationspaket. Sie können damit Ihr Magnet- und Elektrodesign mit Thermo-, Struktur- und Bewegungsanalysen auf demselben Modell koppeln und in einer mühelosen, integrierten Umgebung zusammenführen, ohne Daten importieren und exportieren zu müssen. Diese integrierte multiphysikalische Umgebung bedeutet: kein Durcheinander, kein Herumspringen, kein Chaos, keine Verwirrung. Es bedeutet auch: Effizienz, Genauigkeit und Produktivität.

Elektrothermische Analyse

Ihr Design beinhaltet elektrothermische Aspekte? Aktivieren Sie einfach "Kopplung mit thermischer Berechnung" den stationären oder transienten Zustand in den Eigenschaften. EMS berechnet automatisch die Joule-, Wirbel- und Kernverluste und führt sie dem thermischen Löser zu. Sie können leicht nicht-elektromagnetische Wärmequellen hinzufügen, indem Sie Volumenwärme, Wärmefluss oder einfach nur eine feste Temperatur auswählen. Berücksichtigt man die Umgebungsbedingungen wie Konvektion und Strahlung, berechnet EMS "Thermal Steady State" oder "Transient" die Temperatur, den Temperaturgradienten und den Wärmefluss und speichert sie im Ordner "Thermal Results".

Elektromechanische Analyse

Ebenso ist die elektromechanische Kopplung einfach. Die Option "Couple to Structural" aktiviert den mechansichen EMS-Löser, nachdem die lokale Kraftverteilung in den relevanten Teilen zusätzlich zu den mechanischen Belastungen und Randbedingungen übertragen wurde und berechnet dann die Verschiebungen. Die Belastungen und Spannungen werden anschließend abgeleitet und ebenfalls in den Ordner "Structural Results" aufgenommen. Wenn eine allgemeinere elektrothermomechanische Kopplung gewünscht wird, überträgt EMS sowohl die thermischen als auch die mechanischen Belastungen auf den thermischen und mechanischen Löser. Der "Thermal Solver" wiederum überträgt die thermische Belastungen dem "Structural Solver", der die endgültigen Verschiebungen berechnet, die sowohl die elektromagnetischen als auch die thermischen Belastungen widerspiegeln, wobei die magnetischen, elektrischen, thermischen und mechanischen Parameter berücksichtigt werden.

Integration in Solidworks Motion

Elektrische Maschinen und Antriebe umfassen normalerweise bewegliche Teile und Komponenten. Im Allgemeinen handelt es sich bei der resultierenden Bewegung um eine Rotation, beispielsweise bei Motoren oder um eine Translation, wie beispielsweise bei Linearantrieben. Dennoch können einige Anwendungen wie Magnetschwebemaschinen oder Wirbelstrombremsen alle sechs Freiheitsgrade der Bewegung benötigen. In einem solchen Fall kann nur EMS solche komplizierten Maschinen und Geräte handhaben. Warum? Weil EMS mit dem vielseitigsten und leistungsfähigsten mechanischen Paket für Bewegungen, Solidworks Motion® gekoppelt ist. Weitere Informationen zu diesem robusten Paket finden Sie unter: https://www.solidworks.com/sw/products/simulation/motion-analysis.htm Die Kopplung mit SolidWorks Motion® ist wieder problemlos möglich. Nachdem Sie eine SolidWorks Motion®-Studie erstellt haben, koppeln Sie EMS mit dieser Studie.

Grabcad, 3dcontencentral, traceparts

In den letzten Jahren ist eine wachsende Zahl kostenloser 3D-CAD-Modelle - Millionen - in CAD-Depots wie Grabcad.com, www.3dcontentcentral.com und www.traceparts.com verfügbar geworden. Daher können Sie einfach ein CAD-Modell aus diesen Depots holen, notwendige Änderungen vornehmen und sofort mit der Finite-Elemente-Analyse beginnen.

EMS-Ergebnisse

Mit EMS können Sie als Konstrukteur elektrische, magnetische, mechanische und thermische Parameter berechnen. Dazu gehören:
  • Elektrische Kraft
  • Elektrisches Drehmoment
  • Magnetische Kraft
  • Magnetisches Drehmoment
  • Elektromagnetische Kraft
  • Elektromagnetisches Drehmoment
  • Magnetische Flussdichte
  • Magnetfeld
  • Elektrisches Feld
  • Elektrischer Fluss
  • Stromfluss
  • Wirbelstrom
  • Induktivität
  • Kapazität
  • Widerstand
  • Hysterese-Verlust
  • Wirbelverlust
  • Geschwindigkeit
  • Beschleunigung
  • Mechanische Belastung
  • Flusskopplung
  • Kernverlust
  • Durchschlagsspannung
  • Lorentz-Kraft
  • Lorentz-Drehmoment
  • Skin-Effekt
  • Proximity-Effekt
  • Magnetische Sättigung
  • Induzierte Spannung
  • Kraftdichte
  • Leistungsverlust
  • Temperatur
  • Temperaturgradient
  • Wärmestrom
  • Back EMF
  • Elektrische Flussdichte
  • Impedanz
  • Ohmscher Verlust
  • Mechanische Verschiebung
  • Belastung
Magnetostatic Analysis of a DC Motor 2/2

Magnetostatic Analysis of a DC Motor 2/2

Magnetostatic Analysis of a DC Motor 1/2

Magnetostatic Analysis of a DC Motor 1/2

Magnetostatic Analysis of a Clutch

Magnetostatic Analysis of a Clutch

Electrostatic Analysis of a Powerline Insulator

Electrostatic Analysis of a Powerline Insulator

AC Magnetic Analysis of a Transformer 1/2

AC Magnetic Analysis of a Transformer 1/2

AC Magnetic Analysis of a Transformer 2/2

AC Magnetic Analysis of a Transformer 2/2

Electric Conduction Analysis of a Solar Panel

Electric Conduction Analysis of a Solar Panel

Transient Analysis of Induction Channels (TEAM 10)

Transient Analysis of Induction Channels (TEAM 10)

Magnetostatic Analysis of a Solenoid (TEAM 20)

Magnetostatic Analysis of a Solenoid (TEAM 20)

Core Loss and Transformers

Core Loss and Transformers

Electric Cooling

Electric Cooling

Solenoid with Motion

Solenoid with Motion

Webinar: Motor Design in EMS

Webinar: Motor Design in EMS

Webinar: Transformers Design in EMS

Webinar: Transformers Design in EMS

Webinar: Solenoid Design in EMS

Webinar: Solenoid Design in EMS

Team Zeus testimonials

Team Zeus testimonials

Yasuhiro Kojima - Development Division Chief
Japan Lifeline Co., Ltd.

Catheter Design Optimization Using The Ems Software Package

Stanley Chun Wee - Student
University of Western Australia

Improvement on the Design and Simulation of an Electromagnetic Actuator for Active Vibration Control

Ben Samples, Sr. RF Packaging Engineer
Microsemi Power Products Group

Wire Inductance ARF300

Chris Andre, Mechanical Engineer
Inovio Pharmaceuticals

Genetronics

Ian Hunter, Ph.D.
Nucleus Scientific & MIT

Analysis of a Highly Nonlinear Lorentz Force Linear Motion Electromagnetic Actuator Using EMS

Prof. Davor Grgic
University of Zagreb

Analysis of a 3 phases system

Peter Markowski
Envelope Power, Ansonia, Conn.

Magnetic component design - New generation of 3D electromagnetic finite element analysis software with breakthrough simplicity facilitates magnetic component design

Mário Maia: Electrical Engineer & Ricardo Castro Lopes - Electromagnetic Engineer
efacec

SEM with EMS for SolidWorks Three-Phase Generator Step-up Transformer

Peter Markowski
Envelope Power, Ansonia, Conn.

3D FEA Software Solves Tough Inductive Noise Problems

Raju Ahamed*, Muhammad Mahbubur Rashid, Md Meftahul Ferdaus and Hazlina Md. Yusof
Department of Mechatronics Engineering, International Islamic University Malaysia, Kuala Lumpur

Design and modeling of energy generated magneto rheological damper

Matthew L. Warren, Richard Branam, and Carl Hartsfield
University of Alabama, Tuscaloosa, AL 35487 & Air Force Institute of Technology, WPAFB, OH 45355

Examination of Halbach Permanent Magnet Arrays in Miniature Hall-Effect Thrusters

Jonathan Kelley
North Carolina School of Science and Mathematics

Finite Element Method Validity on Biconic Cusp Magnetic Connement

Juan Sebastián Lasprilla Hincapié, Andresdavid Vargas Sandoval, José Zuluaga Parra
Military University of New Granada

AXIAL FLUX ELECTRIC MOTOR

Sean Francis and Soojin Jun
University of Hawaii

Design and Optimization of a Solenoid for Magnetic Field Treatment Using Finite Element Analysis

Damiano Baccarella, Timothy Daniel
University of Illinois at Urbana-Champaign

Design of a resistor for an ohmic-heated hypersonic wind tunnel

Robin Horn
The University of Edinburgh

The Development and Production of Yet Another Wind Turbine

Jaromír Klarák
University of Žilina, Slovakia

Design of an open coil for inductive preheating of wires in production line

Rahul Puthukode Ramakrishnan and Rohit Puthukode Ramakrishnan, students
CMR Institute of Technology

Simulation studies of Composite Insulators used in high voltage transmission

Hugues Langlois
École de Technologie Supérieure, Montréal

A Hands-on Experiment for Empirical Validation of EMS Magnetostatic Analysis

Biruk Gebre, Kishore Pochiraju
Stevens Institute of Technology

Modeling and Machine Learning Aided Analysis of a Claw-Less Magnetically Coupled Ball-Drive Design

Vitor Nascimento
University of Coimbra

M.A.D Battery (MAgnetic spring Disk)

Emmanuelle Rosati Azevedo, Aaron Knoll
Imperial College London

Magnetic Field Enhancement of the Quad Confinement Thruster

Mihir Pewekar
Rajiv Gandhi Institute of Technology

Analysis of Active Magnetic Bearings

Van Tai Nguyen* and Tien-Fu Lu
University of Adelaide

Analytical Expression of the Magnetic Field Created by a Permanent Magnet with Diametrical Magnetization

Ian Rouse
University of Basel

The electric potential generated in surface-electrode ion traps: a comparison between an analytical model and finite-element methods

David Tersegno and Alexandria Johnson
Brown University

Modeling the electric eld in a spherical void electrodynamic levitator

Paul Schall
University of Stuttgart

Analysis of Influencing Factors on Magnetic Flux Density in Wire Ropes

Greg Zdor
Andrews University

Design of an Induction – Based Plug for Car Engine Block Heater Application

Yee Choon Sean and Kek Jia Yon from Tunku
Abdul Rahman University College

Investigating, Analyzing and Improving of Electric Field and Voltage Distributions along 230 kV High Voltage Insulators

Rainer Küüsvek
Imperial College London

Design of a Novel 300W Thruster: The Vectorable Cross-Field (VeX) Thruster

Skriptyan N. H. Syuhri and Andrea Cammarano
University of Glasgow

Simulation of A Reluctance Actuator

Tyler Naughton, Christian Petrie, and Jamie Coble
Department of Nuclear Engineering, University of Tennessee

Capacitance-Based Dimensional Change Sensors for In-Pile Materials Measurements

Fco. Javier López-Alcolea ; Javier Vázquez ; Pedro Roncero-Sánchez ; Alfonso Parreno Torres
Universidad de Castilla-La Mancha Escuela Tecnica Superior de Ingenieros Industriales

Modeling of a Magnetic Coupler Based on Single and Double-Layered Rectangular Planar Coils With In-Plane Misalignment for Wireless Power Transfer

Franz Tralmer and Thomas Keller
Max-Planck-Institute for Solid State Research

A permanent magnet system for neutron spin analyzers optimized with the EMS software

Yu-Ting Chen
Harvard University

Design of Electric-Field Plates for a Rydberg-Atom Experiment

  • Ian Hunter, Ph.D.
    Ian Hunter, Ph.D.
    Nucleus Scientific & MIT

    A Lorentz force linear motion actuator was built to deliberately exhibit a highly nonlinear current for force relation even when the coil was completely immersed in the magnetic field. Magnets were arranged radially around the coil but only half the permissible number were included in order to generate a more complex actuator configuration to test the ability of the EMS electromagnetic finite element analysis software to handle more challenging magnetic path geometries. A detailed set of experiments were carried out on the actual actuator and a similar set of analyses were undertaken using the EMS magnetostatic electromagnetic finite element analysis software. EMS correctly accounted for the gross nonlinearities in the current to force measurements.

  • Hocine Djellab, Ph.D.
    Hocine Djellab, Ph.D.
    Verdun Anodizing

    I am the R&D manager at Verdun Anodizing. Verdun has been in business of anodizing of aerospace and military components for over 70 years.

    I used EMS to simulate primary and secondary current distributions in our electrochemical cells using the Electric Conduction module.Using this tool, we succeeded in optimizing the setup of the electrochemical cells by studying various material of the electrodes and the bath parameters such as the acid concentration and temperature.A trial-and-error procedure would have taken us years to achieve the optimal design achieved using EMS. It was a well worth it investment.

  • Christer Söderberg, Specialist DC Machines
    Christer Söderberg, Specialist DC Machines
    ABB AB

    ABB Automation Products business unit in Västerås, Sweden designs and produces large and powerful DC motors for major industrial applications.  The output power of such motors actually ranges from 30 KW to 1400 KW!



    The Research & Development Department of the DC Motors division is currently developing a new generation of larger DMI motors.  They use the CAD software package SolidWorks and its Gold Certified electromagnetic Add-in, EMS, from ElectroMagneticWorks to optimize their design.  With the help of these powerful design tools, they aim to develop powerful DC machines.  Such machines will achieve output power and torque significantly higher and more compact than any DC motors available on the market today.

  • Chris Andre, Mechanical Engineer
    Chris Andre, Mechanical Engineer
    Inovio Pharmaceuticals

    Inovio Pharmaceuticals (formerly Genetronics), specializes in developing technology and hardware that has the potential to allow physicians to more efficiently and cost-effectively deliver life-saving drugs or beneficial genes to patients with catastrophic illnesses, including cancer. The company is the technology leader in electroporation therapy (EPT), the application of very brief, carefully controlled, pulsed electric fields, to human cells. This process causes pores to open in the cell membrane and allows pharmaceuticals or genes, injected in the area prior to the application of the electric pulse, to gain access to the cell's interior. The cell pores close up a short time later, trapping the chemotherapeutic agents inside the cancer cell, so they can destroy the cell



    EMS and SolidWorks play a vital role in evaluating the electrical fields used with Inovio's electroporation devices, helping to determine and optimize the electrical field strength throughout the volume of space around the electrodes



    EMS and SolidWorks have significantly sped up Inovio product development. "The time savings are so dramatic they are, in a sense, unquantifiable," says Andre. "Using EMS, we can change an electrode geometry and analyze an electrical field within a half hour. If we had to do these three dimensional calculations for the more complicated electrode geometries by hand, it would take days."

  • Steve Bornhoft, Mechanical Engineer
    Steve Bornhoft, Mechanical Engineer
    BIO-CHEM FLUIDICS

    BIO-CHEM FLUIDICS designs and manufactures high quality BIO-CHEM VALVE™ brand solenoid operated Micro-Pumps, Isolation Valves, Pinch Valves and Electric Rotary Valves.  BIO-CHEM used EMS and SolidWorks to design their solenoids.  Steve sent us the following email:



    "Just to let you know, we have designed a solenoid using your software and built a prototype and the final results are within plus or minus 5%.  This is truly incredible.  We are going to be using your software to redesign our entire solenoid product line!  Take care and I will let you know if I have any problems."

  • Mark Maska, Mechanical Design Engineer
    Mark Maska, Mechanical Design Engineer
    Philips Dunlee

    Dunlee is a division of Philips Healthcare.  Dunlee is the World Leader in the Design, Manufacture and Distribution of CT and Radiographic X-Ray Products.  The company used EMS and SolidWorks in the design of X-Ray sources.  We received the following quote from Mark:

    “EMWorks electrostatic analysis interfaces well with Solidworks to quickly design and optimize high voltage x-ray sources.”

     

  • Alessandro Puliero, Research & Development
    Alessandro Puliero, Research & Development
    COELME SPA

    "Part of Southern States group since 2004, we are now the world leader in the field of disconnectors and switchers. The roots of our history are nearly one century old, which guarantees the highest level of experience. From 3 industrial sites, we bring the right solution to hundreds of customers in the world. The Research & Development Department uses the EMS to optimize our products"

  • Laurent Klopfenstein, Mechatronics Engineer
    Laurent Klopfenstein, Mechatronics Engineer
    AB Elektronik GmbH

    AB Elektronik GmbH is one of the best class developer and manufacturer of sensors and mechatronic systems for automotive and industrial applications. Our divisional center of competence is located in Germany and UK. Our focus is to develop new sensor based either on inductive or magnetic technologies as well as pressure or temperature sensors.



    “we mainly use the software for the improvement of speed sensor like crankshaft and camshaft sensor, the first stage of simulating the actual design and compare the result with EMS simulation gave us high confidence on the software, the second stage was the improvement of the system itself, and thanks to the software, we have done it much faster and much cheaper than with usual method like prototyping or try and error”

  • Wesley Wills, Product Design Engineer - PSD
    Wesley Wills, Product Design Engineer - PSD
    Southern States

    Southern States is the leading innovator for products for high voltage power transmission and distribution. Special purpose switching devices, Economical solutions, Superior technology.

    EMS has been a valuable analysis tool for Southern States LLC. The program itself works well in conjunction with Solidworks and what is most valuable is the hands-on responsive support we receive from EM Works when we need help.

    We are pleased with the EM Works team and hope to see more of the same customer-focus in 2013.

    Thank you.



    Posted on: December 28, 2012

  • David GIRARD, Electromagnetic Engineer
    David GIRARD, Electromagnetic Engineer
    Tec Automatismes

    For over 40 years, TEC AUTOMATISMES has developed products perfectly fitting customers and markets requirements worldwide.


    Founded in 1962, our company designs and manufactures products in full accordance with the latest technical and technological advancements. We thus offer global "tailor-made" solutions including: Relays (TEC and MTI brand names), Solenoids and hold magnets, Sequencers and programmable controllers, Electric control panels.


    “We use EMS to calculate the forces in order to improve ours actuals solenoids and to build news products (solenoids and holding magnets).


    This software permits to reduce the number of prototypes. The results are accurate, we can check that every time we build a product designed with EMS.


    Thank you so much”.


    Posted on: January 2, 2013


     

  • Raimund Streland - Technical Manager
    Raimund Streland - Technical Manager
    Pfiffner Deutschland GmbH

    For more than 30 years, Pfiffner has been developing rotary transfer systems of the highest precision and flexibility. Thanks to our meticulous spirit of inventiveness, solution-oriented practice and unparalleled knowledge of the market, Pfiffner has today become a world-leading partner of the most innovative industries and has established itself as one of the largest independent machine tool manufacturers in the whole of Switzerland.

    For about 2 years we are using EMS, mostly for electrical field calculation in high voltage equipment. Also we are a very young company; we personally have a long time experience using finite element software. To get familiar with EMS, I have had a web seminar. Some hours on some days were enough to start up. The support during the “learning time” by the EMS Team was very good. Now I’m an experienced user, phone calls with the service team become more and more seldom.

    What’s the extract?

    * EMS is well structured; the use is intuitive and logical.

    * It works together with Solid Works without problems.

    * The output (reports and pictures) is clear and in very good quality.

    * Very good support.

    Conclusion: Highly recommended



    Posted on: January 9, 2013

  • Aaron Rhodes - Mechanical Engineer
    Aaron Rhodes - Mechanical Engineer
    GT ADVANCED TECHNOLOGIES

    We provide equipment and services that support the growth of the solar and LED industries. Our market leadership is based on innovation, deep domain crystallization and material expertise and operational execution. These qualities allow us to enable the evolution and commercialization of new technologies by elevating performance, improving quality and lowering cost. 

    "…I found the onsite training very helpful in getting me started and the people at EMWorks were knowledgeable and friendly. Any time I’ve had a question; the support staff has gotten back to me quickly and helped to resolve any problems. The software is easy to navigate as it is well integrated into SolidWorks and has a good help file"

  • Yasuhiro Kojima - Development Division Chief
    Yasuhiro Kojima - Development Division Chief
    Japan Lifeline Co., Ltd.

    Since the founding of Japan Lifeline in 1981, we have focused on Japanese cardiac treatment developments and have accumulated extensive know-how in this field.

    At the same time we have fostered a strong business as a cardiovascular-system-related medical equipment specialist trading company.

    Presently, cases of cardiac disease (heart related illnesses) are on the rise, and this disease is rated among the three major causes of death along with cancer and cerebrovascular disease. On the other hand, advances are being made in treatment technique and early discovery technique. Many cardiac diseases that were once thought of as difficult to treat are now considered to be treatable.

    "Using the electromagnetic software package EMS, we developed optimal catheters faster and at a lower cost with a minimum number of physical prototypes.  As a result, we brought our products faster to market.  We could not have done it without EMS."



     

  • Benjamin James Carroll - Shell Design Engineer
    Benjamin James Carroll - Shell Design Engineer
    Efacec Power Transformers, Inc., Portgual

     

    Efacec – the largest Portuguese Group in the field of electricity – is present in more than 65 countries, employs around 4500 people and its turnover has already exceeded 1 billion Euros. The portfolio of Efacec's business activities includes: Energy, Transformers, Switchgear, Servicing of Energy, Engineering, Automation, Renewable Energy & Transportation…



    “…The EMS software package has been a great asset to Efacec Power Transformers.  The user interface is easy to understand allowing for fast setup and processing of thermal models.  The accurate results have helped us make better decisions on material use for reducing cost”

  • Stanley Chun Wee - Student
    Stanley Chun Wee - Student
    University of Western Australia

     

    "Thank you for giving me the opportunity to use the ElectroMagneticWorks add-in on SolidWorks. It has been amazing to experiment with.

    The simplicity and intuitiveness of the software made it a very rewarding experience when simulating my model for the purpose of writing my dissertation to which I have given full credit to EMS. Although it might seem intimidating to use at first, the tutorials proved to be the ultimate savior.

    I have truly learned a lot from this software. Knowledge that are taught in the book were only found to be true to a certain extent and it has gave me a new insight in dealing with electromagnetic designs which I have included in my dissertation.

    Keep up the good work."

     

  • Oleg Lyan and  Vincent Monet - Students
    Oleg Lyan and Vincent Monet - Students
    Klaipedos Universitetas



    In our bachelor thesis, a patented “bifilar” coil (BC) type permanent magnet generator (PMG) is constructed for scientific research. The features, working principle and elements of the BCPMG are analyzed.

    The BCPMG is developed from the iron-cored “bifilar” coil topology based on Aleksas Pašilis's and Eleonora Guseinovien's patent (Lithuania) in an attempt to overcome the problems with current rotary type Generators, which have so far been dominant on the market.

    One of the problems is Armature Reactance, which is usually bigger than Resistance.

    The circumstance creates difficulties for designers and operators of the Generator.

    "...That is why patented technology is offered to partially remove or absolutely neglect the reactance of the machine. We used The Simulation Software EMS:

    To get to the flow direction of the Magnetic Flux Densities through the system, which the same is as expected to be.

    To test to a real machine. We found the opportunity of the motion simulation, but there wasn't much time for that investigation.

    We have made only a 1/5 sector of the generator to keep the resources at minimum.

    We used also a Finite Element Magnetic Model (FEMM) to visualize the effects of the system.

    To visualize the effects of the 3 phase current to the flow of flux and densities on the system."




     

  • Zbigniew Usarek - PHD.Student
    Zbigniew Usarek - PHD.Student
    Gdansk University of Technology

     

    Non-destructive testing (NDT) team at the Solid State Physics Department of the Faculty of Applied Physics and Mathematics cooperates on the broad scale with industry representatives in developing methodology and apparatus for magnetic NDT.



    "Currently we are optimizing Pipeline Inspection Gauge (PIG) with Magnetic Flux Leakage (MFL) system to evaluate technical condition of pipelines. Such system consists of magnetizing yoke and magnetic field sensors. Working PIG can reach velocity of even 10 m/s due to liquid media pressure. Our job is to model effect of velocity on eddy currents generation and hence distortion of MFL signal.

    We have heard about the EMWorks software as a result of searching for Finite Element Modelling (FEM) software which would be adequate for our purposes. After the review of various offers we stated that EMS has all features we need. The great advantage of this package is that it is based on SolidWorks. Thanks to this design of even very complex models becomes child's play. My first magnetostatic model in EMS was created in just a few minuts! I highly recommend EMWorks software for all those who need friendly interface as well as professional FEM software."



  • Michael Rattray - Engineer
    Michael Rattray - Engineer
    Magnetic Products, Inc.

    Magnetic products inc. (MPI), based in southeastern Michigan, is a worldwide provider of both magnetic and non-magnetic material handling solutions. MPI leads the industry by continuously engineering inventive magnetic equipment and advancing customer education though significant investments in research and development and proactive product training.

    "EMS has been a valuable analysis tool for Magnetic Product Inc. (MPI). The program itself works well in conjunction with inventor and what is most valuable is the hands-on responsive support we receive from EMWorks when we need help."

    We are pleased with the EMWorks team and hope to see more of the same customer-focus in 2014.

     

  • Henk Te Kronnie - Mechanical Engineer
    Henk Te Kronnie - Mechanical Engineer
    Electrotechnische Industrie ETI b.v

    ETI has been designing and delivering reliable transformers and inductors for industrial applications for more than 50 years. ETI also delivers transformers for medical research and railway systems. In addition, ETI designs and produces Wiring Harnesses, Power Units, DC Power Supplies and Constant Voltage Transformers that are used in its Line Conditioners.

    "The EMS for Autodesk Inventor package has been a great tool for ETI. The software is user friendly, very easy to learn, and most important it has been very useful in the evaluation and designing process. EMWorks Support has been prompt and helpful."

     

  • Paul Von Dollen - Graduate Student
    Paul Von Dollen - Graduate Student
    University of California, Santa Barbara

    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. The main campus is located on a 1,022-acre (414 ha) site near Goleta, California, United States, 8 miles (13 km) from Santa Barbara and 100 miles (160 km) northwest of Los Angeles. Tracing its roots back to 1891 as an independent teachers' college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system.



    "I used the AC Magnetics module within the EMS software to model electromagnetic coupling to a lab-scale molten metal charge.  This modeling was meant to investigate the efficiency and efficacy of inductive coupling as a means to heat and stir a metal solvent for a high temperature crystal growth process.  I found the software to be well integrated with Solidworks, with intuitive menus and feature commands.  The array of parameters available for adjustment was quite broad; I was able to easily set up a good proxy for my actual experimental setup.  The ability to copy/paste an entire study in one step made it especially quick to vary parameters and compare results.

     

    EMS software represents a powerful and robust tool for anyone conducting research, design or development of systems involving electromagnetics."
     

  • Jaromir Koniarski - Graduate Student
    Jaromir Koniarski - Graduate Student
    Silesian University of Technology

    The Silesian University of Technology (SUT) is one of the biggest universities of technology in Poland, with more than 60-years successful tradition in education, research and development as well as cooperation with industry. 



    The Faculties cover the whole range of engineering disciplines, as well as elements of management, sociology and administration. The number of students in all types of courses in the academic year 2013/2014 is about 27 000. Educational and research activities benefit from large number of modern lecture halls and advanced laboratories and are carried out by remarkable university staff consisting of over 1700 academic teachers including 300 professors and DSc degree holders.



    …”The installation of EMS for Inventor is very easy, it also has a lot of analysis options. The interface is intuitive and clear. EMS for Inventor allows for fast and accurate linkage analysis in the field of electro-thermal and magnetic as for the design of highly complex projects is very useful. EMS saves time and avoids the problems associated with the transformation of files between different programs - in this way we gain time, which in the case of very complex analysis is priceless. The Support Team of EMWorks is very professional and very helpful - if an error is detected; the reaction and giving solution is very fast…”

    Read More

  • Suleyman SAROGLU - R&D Electrical Engineer
    Suleyman SAROGLU - R&D Electrical Engineer
    Akar Asansor

     

    AKAR Asansor, elevator systems designed and manufactured for use in asynchronous (gear) and synchronous (gearless) machines with motors known worldwide and are one of the preferred suppliers. Since it was founded in 1985 AKAR Asansor continuously improves service and quality standards in the industry pioneer known for the Turkish elevator.

    "As Akar R&D Team, improving & implementing new technologies to elevator motor design has always in our first priority. In pursuit of progress our way come across with EMWorks' Solidworks EMS add-ins two years ago. Since then EMS always gave us reliable electromagnetic analyses and viable targeted solutions. Most importantly, EMS analyses overlapped perfectly with test results for our spring applied electromagnetic brakes.  

    Their integration with Solidworks, elevated our team work as mechanical & electrical harmony. When needed, the result-oriented technical team was there for us until the job is done.

    Hereby we can recommend EMS add-ins for Solidworks without any hesitation."

     

  • Louis Moskven - Mechanical Engineering Student
    Louis Moskven - Mechanical Engineering Student
    University of British Columbia



    Our design will revolve around the analysis of a new electron catcher (Faraday cup) and design an Electron Catcher for target station EMS from EMWorks has been a valuable tool for integrating electromagnetic component design into our SolidWorks environment.

    EMS has allowed us to simplify the development stages for RF and high power AC componentry by reducing the number of experiments required during prototyping. The intuitive user interface combined with the simple transition between the design environment and finite element suite ensure that any required changes to a design can be completed, implemented, and brought back into the EMS environment for further simulation in a very short timeline.

    Thank you for your valuable tool and help


    triumf website: www.triumf.ca

  • Rui Zhang - undergraduate engineering student
    Rui Zhang - undergraduate engineering student
    Dartmouth College

    "I used EMWorks for an undergraduate biomedical engineering project. I am thankful that EMWorks is very well integrated with SolidWorks, which makes constructing 3D geometries straight-forward. The step-by-step tutorial of EMWorks also helped me in learning the software. Many other multiphysics software applications don't have easy-to-use tutorials. Overall, EMWorks has been helpful software for my project."

  • Sebastian Bock
    Sebastian Bock
    University of Siegen Germany

    I got used to EMS very fast. I just needed two days to get a first result.

    Especially the simplicity to apply boundary conditions or to refine the mesh at certain surfaces or solids is great!

    And also the options to plot the results are very nice and intuitive.

    In the end the results of the simulation matched very well with the experimental values.

  • Nikola Radakovic, R&D Engineer
    Nikola Radakovic, R&D Engineer
    Institute of Atomic and molecular Sciences, Academia Sinica, Taiwan

    Our magnetic bearing design requires dynamic and electromagnetic FEA verification. EMS solver is fully compatible with Solidworks and it allowed us a very short learning curve. With basic knowledge of Solidworks we have mastered EMS in less than two working days.

  • Paul M. Kurowski, Assistant Professor
    Paul M. Kurowski, Assistant Professor
    Western University

    I used EMS to teach the third year undergraduate course "Finite Element Methods for Mechatronic Systems Engineering". Students were already familiar with and SOLIDWORKS Simulation and Electromagnetics; they had no troubles learning EMS and working on meaningful assignment problems all within one lab. The use of EMS definitely added value to the course and enhanced students' learning experience.

  • Amir Vedadi, a student
    Amir Vedadi, a student
    Oxford Brookes University

    EMS is quite useful program for finding electric and magnetic fields in unorthodoxly shaped assemblies. It has been especially helpful for me when I was trying to design circuits with high voltage and current applications, which are potentially lethal for students. EMS comes with a set of tutorials that guide users through the model setup and demonstrate a large variety of applications. Overall, a very professional electromagnetic simulation software.

  • Michelle Wei, Massachusetts General Hospital
    Michelle Wei, Massachusetts General Hospital
    Harvard Medical School

    The EMS magnetostatics module has been amazing for designing permanent magnet configurations to optimize magnetic field shape. The interface with SolidWorks is really intuitive and I was able to start using it quickly. Even better, the customer service and tech support have been wonderful! I highly recommend this software.

  • Raffaello Biagini, Student
    Raffaello Biagini, Student
    The University of Genoa

    I started using EMS because I was looking for a software that could compute accurate 3D magnetic field results, and at the same time provide all the associated variables, such as inductance, force, losses etc. Not only EMS perfectly fulfilled my simulation demands, but I also benefited from the great tech. support, which made my experience with EMS even more enjoyable.