Elektromagnetische Simulation
Die magnetische und elektrische Feldmodellierungssoftware

Über EMS

EMS ist eine Software zur Simulation elektromagnetischer Felder, die Felder (elektrisch/magnetisch/Fluss/Potential/Wirbelströme), Schaltungsparameter (Induktivität/Kapazität/Widerstand/Impedanz/Flussverknüpfung), mechanische Parameter (Kraft/Drehmoment) und Verluste (Wirbel//Kern/Hysterese/Ohm)  berechnet. EMS ist ein Gold-zertifiziertes Add-In für SOLIDWORKS® und ein Add-In für Autodesk® Inventor®, mit dem Sie die kompliziertesten elektrischen Maschinen, Motoren, Generatoren, Sensoren, Transformatoren, Hochspannungsgeräte, Hochleistungsmaschinen und elektrischen Schalter, Ventile, Aktuatoren, Leiterplatten, Schwebemaschinen, Lautsprecher, Permanentmagnetmaschinen, ZfP-Geräte, Wechselrichter, Wandler, Sammelschienen, Induktivitäten, Durchführungen oder biomedizinische Geräte  simulieren können.

Besonderheiten und Funktionen

Vollständige 3D-Simulation elektromagnetischer Felder: Mit EMS können Sie sowohl elektrische als auch magnetische Simulationen unter Verwendung Ihrer vollständigen 3D-Geometrie durchführen, um eine 100% Genauigkeit und Integrität Ihrer Entwürfe sicherzustellen. EMS schafft auch 2D-Planar- und Achsensymmetriesimulationen für Konstruktionen, bei denen eine solche Vereinfachung die Lösungszeit erheblich verkürzt, ohne Kompromisse bei der Genauigkeit einzugehen.

Vollständige Integration in die CAD-Geometrie: Die nahtlose Integration von EMS in die beiden wichtigsten CAD-Plattformen - SOLIDWORKS und Autodesk® Inventor® - ermöglicht es Ihnen, die kompliziertesten elektromagnetischen Konstruktionen zu simulieren. Sie müssen das Rad nicht "neu erfinden", sondern nur ein CAD-Modell vom mechanischen Zeichner erwerben und Ihre elektrische oder magnetische Simulation sofort ohne Änderungen starten.

Parametrische Simulation: Für das perfekte Design ermöglicht EMS zahlreiche Analysen. Jede CAD-Dimension oder Simulationsvariable kann als Parameter festgelegt werden, um die Auswirkungen ihrer Änderungen auf Ihr Design zu untersuchen. Dies dient als erster Schritt zur Optimierung Ihrer Designs.

Multiphysik-Funktionen: EMS ist eine echte Multi-Physik-Software, mit der Sie Ihr magnetisches und elektrisches Design in einer problemlosen integrierten Umgebung mit Schaltkreis-, Bewegungs-, Wärme- und Strukturanalysen an demselben Modell koppeln können, ohne Daten importieren oder exportieren zu müssen. Diese integrierte Multi-Physik-Umgebung bringt dem Benutzer Effizienz, Genauigkeit und Produktivität.

Benutzerfreundliche Oberfläche und eingebettete Lernmaterialien: Einfach zu bedienendes Programm mit einer sehr kurzen Lernkurve. Befolgen Sie die gleiche Philosophie Ihrer CAD-Software. Die Demo-Viewer-Funktion in der Software bietet Ihnen Zugriff auf zahlreiche Schulungsmaterialien zum schnellen Lernen und zur Einführung von EMS.

Simulating the fringing of electric field using EMS for SOLIDWORKS

Position and speed sensor simulation using EMS for SOLIDWORKS

Simulation of a high voltage insulator using EMS for Inventor

Simulation of a permanent magnet moving through a magnetic array


Simulation of a 3 phase cable using AC Electric solver in EMS for Inventor

EMS for SOLIDWORKS - Coupling to structural

Learn how to select items in the EMS feature tree.

Modeling of Magnetic Gear inside SOLIDWORKS


Simulation of a bar magnet in EMS for SOLIDWORKS

Permanent Magnet Halbach array simulation - EMS for Solidworks

Electromagnetic Modeling with EMS for SOLIDWORKS: A Quick Walk Through

Define Custom Magnet inside EMS for SOLIDWORKS


Electrostatic Simulation with Parametrization

Induction Heating of a Bar

Yasuhiro Kojima - Development Division Chief
Japan Lifeline Co., Ltd.

Catheter Design Optimization Using The Ems Software Package

Stanley Chun Wee - Student
University of Western Australia

Improvement on the Design and Simulation of an Electromagnetic Actuator for Active Vibration Control

Ben Samples, Sr. RF Packaging Engineer
Microsemi Power Products Group

Wire Inductance ARF300

Chris Andre, Mechanical Engineer
Inovio Pharmaceuticals

Genetronics

Ian Hunter
PhD

Analysis of a Highly Nonlinear Lorentz Force Linear Motion Electromagnetic Actuator Using EMS

Prof. Davor Grgic
University of Zagreb

Analysis of a 3 phases system

Peter Markowski
Envelope Power, Ansonia, Conn.

Magnetic component design - New generation of 3D electromagnetic finite element analysis software with breakthrough simplicity facilitates magnetic component design

Mário Maia: Electrical Engineer & Ricardo Castro Lopes - Electromagnetic Engineer
efacec

SEM with EMS for SolidWorks Three-Phase Generator Step-up Transformer

Peter Markowski
Envelope Power, Ansonia, Conn.

3D FEA Software Solves Tough Inductive Noise Problems

Raju Ahamed*, Muhammad Mahbubur Rashid, Md Meftahul Ferdaus and Hazlina Md. Yusof
Department of Mechatronics Engineering, International Islamic University Malaysia, Kuala Lumpur

Design and modeling of energy generated magneto rheological damper

Matthew L. Warren, Richard Branam, and Carl Hartsfield
University of Alabama, Tuscaloosa, AL 35487 & Air Force Institute of Technology, WPAFB, OH 45355

Examination of Halbach Permanent Magnet Arrays in Miniature Hall-Effect Thrusters

Jonathan Kelley
North Carolina School of Science and Mathematics

Finite Element Method Validity on Biconic Cusp Magnetic Connement

Juan Sebastián Lasprilla Hincapié, Andresdavid Vargas Sandoval, José Zuluaga Parra
Military University of New Granada

AXIAL FLUX ELECTRIC MOTOR

Sean Francis and Soojin Jun
University of Hawaii

Design and Optimization of a Solenoid for Magnetic Field Treatment Using Finite Element Analysis

Damiano Baccarella, Timothy Daniel
University of Illinois at Urbana-Champaign

Design of a resistor for an ohmic-heated hypersonic wind tunnel

Robin Horn
The University of Edinburgh

The Development and Production of Yet Another Wind Turbine

Jaromír Klarák
University of Žilina, Slovakia

Design of an open coil for inductive preheating of wires in production line

Rahul Puthukode Ramakrishnan and Rohit Puthukode Ramakrishnan, students
CMR Institute of Technology

Simulation studies of Composite Insulators used in high voltage transmission

Hugues Langlois
École de Technologie Supérieure, Montréal

A Hands-on Experiment for Empirical Validation of EMS Magnetostatic Analysis

Biruk Gebre, Kishore Pochiraju
Stevens Institute of Technology

Modeling and Machine Learning Aided Analysis of a Claw-Less Magnetically Coupled Ball-Drive Design

Vitor Nascimento
University of Coimbra

M.A.D Battery (MAgnetic spring Disk)

Emmanuelle Rosati Azevedo, Aaron Knoll
Imperial College London

Magnetic Field Enhancement of the Quad Confinement Thruster

Asst Prof. Sambhaji D. Gaikwad & Mihir Pewekar
Rajiv Gandhi Institute of Technology

Analysis of Active Magnetic Bearings

Van Tai Nguyen* and Tien-Fu Lu
University of Adelaide

Analytical Expression of the Magnetic Field Created by a Permanent Magnet with Diametrical Magnetization

Ian Rouse
University of Basel

The electric potential generated in surface-electrode ion traps: a comparison between an analytical model and finite-element methods

David Tersegno and Alexandria Johnson
Brown University

Modeling the electric eld in a spherical void electrodynamic levitator

Paul Schall
University of Stuttgart

Analysis of Influencing Factors on Magnetic Flux Density in Wire Ropes

Greg Zdor
Andrews University

Design of an Induction – Based Plug for Car Engine Block Heater Application

Yee Choon Sean and Kek Jia Yon from Tunku
Abdul Rahman University College

Investigating, Analyzing and Improving of Electric Field and Voltage Distributions along 230 kV High Voltage Insulators

Rainer Küüsvek
Imperial College London

Design of a Novel 300W Thruster: The Vectorable Cross-Field (VeX) Thruster

Skriptyan N. H. Syuhri and Andrea Cammarano
University of Glasgow

Simulation of A Reluctance Actuator

Tyler Naughton, Christian Petrie, and Jamie Coble
Department of Nuclear Engineering, University of Tennessee

Capacitance-Based Dimensional Change Sensors for In-Pile Materials Measurements

Fco. Javier López-Alcolea ; Javier Vázquez ; Pedro Roncero-Sánchez ; Alfonso Parreno Torres
Universidad de Castilla-La Mancha Escuela Tecnica Superior de Ingenieros Industriales

Modeling of a Magnetic Coupler Based on Single and Double-Layered Rectangular Planar Coils With In-Plane Misalignment for Wireless Power Transfer

Franz Tralmer and Thomas Keller
Max-Planck-Institute for Solid State Research

A permanent magnet system for neutron spin analyzers optimized with the EMS software

Yu-Ting Chen
Harvard University

Design of Electric-Field Plates for a Rydberg-Atom Experiment

Gregory Verbeke
Saskatchewan Polytechnic, School of Mining, Energy and Manufacturing

DESIGN AND ANALYSIS OF A YASA TYPE MOTOR

Matthew Frost, Ryan McMullen, Kara Hewson, Caleigh Holton, Broghan Martin, Brendan Lynn
California Polytechnic State University

Cal Poly Hyperloop Magnetic Levitation Analysis using EMWorks Simulation Software (EMS)

Robert Lupoiu , Abdullah Mubushar, Kevin Ivo, Daniel Li
University of British Columbia

Design and Analysis of a Switched Reluctance Motor Using EMS

Samuele Martinelli
University of Strathclyde

Simulation of an Organic Magnet in Switched Reluctance Motor Application

Stefano Savio
Polytechnic University of Turin

Design and Optimization of a Magnetic Gear

Van Tai Nguyen
School of Mechanical & Mining Engineering

Data – Driven Modelling of the Interaction Force between Permanent Magnets

Emmanuelle Rosati Azevedo
Imperial College London

MAGNETIC FIELD ENHANCEMENT OF THE QUAD CONFINEMENT THRUSTER (QCT): DESIGN AND EARLY DEVELOPMENT OF THE QCT PHOENIX

  • Ian Hunter
    Ian Hunter
    PhD

    A Lorentz force linear motion actuator was built to deliberately exhibit a highly nonlinear current for force relation even when the coil was completely immersed in the magnetic field. Magnets were arranged radially around the coil but only half the permissible number were included in order to generate a more complex actuator configuration to test the ability of the EMS electromagnetic finite element analysis software to handle more challenging magnetic path geometries. A detailed set of experiments were carried out on the actual actuator and a similar set of analyses were undertaken using the EMS magnetostatic electromagnetic finite element analysis software. EMS correctly accounted for the gross nonlinearities in the current to force measurements.

  • Hocine Djellab, Ph.D.
    Hocine Djellab, Ph.D.
    Verdun Anodizing

    I am the R&D manager at Verdun Anodizing. Verdun has been in business of anodizing of aerospace and military components for over 70 years.

    I used EMS to simulate primary and secondary current distributions in our electrochemical cells using the Electric Conduction module.Using this tool, we succeeded in optimizing the setup of the electrochemical cells by studying various material of the electrodes and the bath parameters such as the acid concentration and temperature.A trial-and-error procedure would have taken us years to achieve the optimal design achieved using EMS. It was a well worth it investment.

  • Christer Söderberg, Specialist DC Machines
    Christer Söderberg, Specialist DC Machines
    ABB AB

    ABB Automation Products business unit in Västerås, Sweden designs and produces large and powerful DC motors for major industrial applications.  The output power of such motors actually ranges from 30 KW to 1400 KW!



    The Research & Development Department of the DC Motors division is currently developing a new generation of larger DMI motors.  They use the CAD software package SolidWorks and its Gold Certified electromagnetic Add-in, EMS, from ElectroMagneticWorks to optimize their design.  With the help of these powerful design tools, they aim to develop powerful DC machines.  Such machines will achieve output power and torque significantly higher and more compact than any DC motors available on the market today.

  • Chris Andre, Mechanical Engineer
    Chris Andre, Mechanical Engineer
    Inovio Pharmaceuticals

    Inovio Pharmaceuticals (formerly Genetronics), specializes in developing technology and hardware that has the potential to allow physicians to more efficiently and cost-effectively deliver life-saving drugs or beneficial genes to patients with catastrophic illnesses, including cancer. The company is the technology leader in electroporation therapy (EPT), the application of very brief, carefully controlled, pulsed electric fields, to human cells. This process causes pores to open in the cell membrane and allows pharmaceuticals or genes, injected in the area prior to the application of the electric pulse, to gain access to the cell's interior. The cell pores close up a short time later, trapping the chemotherapeutic agents inside the cancer cell, so they can destroy the cell



    EMS and SolidWorks play a vital role in evaluating the electrical fields used with Inovio's electroporation devices, helping to determine and optimize the electrical field strength throughout the volume of space around the electrodes



    EMS and SolidWorks have significantly sped up Inovio product development. "The time savings are so dramatic they are, in a sense, unquantifiable," says Andre. "Using EMS, we can change an electrode geometry and analyze an electrical field within a half hour. If we had to do these three dimensional calculations for the more complicated electrode geometries by hand, it would take days."

  • Steve Bornhoft, Mechanical Engineer
    Steve Bornhoft, Mechanical Engineer
    BIO-CHEM FLUIDICS

    BIO-CHEM FLUIDICS designs and manufactures high quality BIO-CHEM VALVE™ brand solenoid operated Micro-Pumps, Isolation Valves, Pinch Valves and Electric Rotary Valves.  BIO-CHEM used EMS and SolidWorks to design their solenoids.  Steve sent us the following email:



    "Just to let you know, we have designed a solenoid using your software and built a prototype and the final results are within plus or minus 5%.  This is truly incredible.  We are going to be using your software to redesign our entire solenoid product line!  Take care and I will let you know if I have any problems."

  • Mark Maska, Mechanical Design Engineer
    Mark Maska, Mechanical Design Engineer
    Philips Dunlee

    Dunlee is a division of Philips Healthcare.  Dunlee is the World Leader in the Design, Manufacture and Distribution of CT and Radiographic X-Ray Products.  The company used EMS and SolidWorks in the design of X-Ray sources.  We received the following quote from Mark:

    “EMWorks electrostatic analysis interfaces well with Solidworks to quickly design and optimize high voltage x-ray sources.”

     

  • Alessandro Puliero, Research & Development
    Alessandro Puliero, Research & Development
    COELME SPA

    "Part of Southern States group since 2004, we are now the world leader in the field of disconnectors and switchers. The roots of our history are nearly one century old, which guarantees the highest level of experience. From 3 industrial sites, we bring the right solution to hundreds of customers in the world. The Research & Development Department uses the EMS to optimize our products"

  • Laurent Klopfenstein, Mechatronics Engineer
    Laurent Klopfenstein, Mechatronics Engineer
    AB Elektronik GmbH

    AB Elektronik GmbH is one of the best class developer and manufacturer of sensors and mechatronic systems for automotive and industrial applications. Our divisional center of competence is located in Germany and UK. Our focus is to develop new sensor based either on inductive or magnetic technologies as well as pressure or temperature sensors.



    “we mainly use the software for the improvement of speed sensor like crankshaft and camshaft sensor, the first stage of simulating the actual design and compare the result with EMS simulation gave us high confidence on the software, the second stage was the improvement of the system itself, and thanks to the software, we have done it much faster and much cheaper than with usual method like prototyping or try and error”

  • Wesley Wills, Product Design Engineer - PSD
    Wesley Wills, Product Design Engineer - PSD
    Southern States

    Southern States is the leading innovator for products for high voltage power transmission and distribution. Special purpose switching devices, Economical solutions, Superior technology.

    EMS has been a valuable analysis tool for Southern States LLC. The program itself works well in conjunction with Solidworks and what is most valuable is the hands-on responsive support we receive from EM Works when we need help.

    We are pleased with the EM Works team and hope to see more of the same customer-focus in 2013.

    Thank you.



    Posted on: December 28, 2012

  • David GIRARD, Electromagnetic Engineer
    David GIRARD, Electromagnetic Engineer
    Tec Automatismes

    For over 40 years, TEC AUTOMATISMES has developed products perfectly fitting customers and markets requirements worldwide.


    Founded in 1962, our company designs and manufactures products in full accordance with the latest technical and technological advancements. We thus offer global "tailor-made" solutions including: Relays (TEC and MTI brand names), Solenoids and hold magnets, Sequencers and programmable controllers, Electric control panels.


    “We use EMS to calculate the forces in order to improve ours actuals solenoids and to build news products (solenoids and holding magnets).


    This software permits to reduce the number of prototypes. The results are accurate, we can check that every time we build a product designed with EMS.


    Thank you so much”.


    Posted on: January 2, 2013


     

  • Raimund Streland - Technical Manager
    Raimund Streland - Technical Manager
    Pfiffner Deutschland GmbH

    For more than 30 years, Pfiffner has been developing rotary transfer systems of the highest precision and flexibility. Thanks to our meticulous spirit of inventiveness, solution-oriented practice and unparalleled knowledge of the market, Pfiffner has today become a world-leading partner of the most innovative industries and has established itself as one of the largest independent machine tool manufacturers in the whole of Switzerland.

    For about 2 years we are using EMS, mostly for electrical field calculation in high voltage equipment. Also we are a very young company; we personally have a long time experience using finite element software. To get familiar with EMS, I have had a web seminar. Some hours on some days were enough to start up. The support during the “learning time” by the EMS Team was very good. Now I’m an experienced user, phone calls with the service team become more and more seldom.

    What’s the extract?

    * EMS is well structured; the use is intuitive and logical.

    * It works together with Solid Works without problems.

    * The output (reports and pictures) is clear and in very good quality.

    * Very good support.

    Conclusion: Highly recommended



    Posted on: January 9, 2013

  • Aaron Rhodes - Mechanical Engineer
    Aaron Rhodes - Mechanical Engineer
    GT ADVANCED TECHNOLOGIES

    We provide equipment and services that support the growth of the solar and LED industries. Our market leadership is based on innovation, deep domain crystallization and material expertise and operational execution. These qualities allow us to enable the evolution and commercialization of new technologies by elevating performance, improving quality and lowering cost. 

    "…I found the onsite training very helpful in getting me started and the people at EMWorks were knowledgeable and friendly. Any time I’ve had a question; the support staff has gotten back to me quickly and helped to resolve any problems. The software is easy to navigate as it is well integrated into SolidWorks and has a good help file"

  • Yasuhiro Kojima - Development Division Chief
    Yasuhiro Kojima - Development Division Chief
    Japan Lifeline Co., Ltd.

    Since the founding of Japan Lifeline in 1981, we have focused on Japanese cardiac treatment developments and have accumulated extensive know-how in this field.

    At the same time we have fostered a strong business as a cardiovascular-system-related medical equipment specialist trading company.

    Presently, cases of cardiac disease (heart related illnesses) are on the rise, and this disease is rated among the three major causes of death along with cancer and cerebrovascular disease. On the other hand, advances are being made in treatment technique and early discovery technique. Many cardiac diseases that were once thought of as difficult to treat are now considered to be treatable.

    "Using the electromagnetic software package EMS, we developed optimal catheters faster and at a lower cost with a minimum number of physical prototypes.  As a result, we brought our products faster to market.  We could not have done it without EMS."



     

  • Benjamin James Carroll - Shell Design Engineer
    Benjamin James Carroll - Shell Design Engineer
    Efacec Power Transformers, Inc., Portgual

     

    Efacec – the largest Portuguese Group in the field of electricity – is present in more than 65 countries, employs around 4500 people and its turnover has already exceeded 1 billion Euros. The portfolio of Efacec's business activities includes: Energy, Transformers, Switchgear, Servicing of Energy, Engineering, Automation, Renewable Energy & Transportation…



    “…The EMS software package has been a great asset to Efacec Power Transformers.  The user interface is easy to understand allowing for fast setup and processing of thermal models.  The accurate results have helped us make better decisions on material use for reducing cost”

  • Stanley Chun Wee - Student
    Stanley Chun Wee - Student
    University of Western Australia

     

    "Thank you for giving me the opportunity to use the ElectroMagneticWorks add-in on SolidWorks. It has been amazing to experiment with.

    The simplicity and intuitiveness of the software made it a very rewarding experience when simulating my model for the purpose of writing my dissertation to which I have given full credit to EMS. Although it might seem intimidating to use at first, the tutorials proved to be the ultimate savior.

    I have truly learned a lot from this software. Knowledge that are taught in the book were only found to be true to a certain extent and it has gave me a new insight in dealing with electromagnetic designs which I have included in my dissertation.

    Keep up the good work."

     

  • Oleg Lyan and  Vincent Monet - Students
    Oleg Lyan and Vincent Monet - Students
    Klaipedos Universitetas



    In our bachelor thesis, a patented “bifilar” coil (BC) type permanent magnet generator (PMG) is constructed for scientific research. The features, working principle and elements of the BCPMG are analyzed.

    The BCPMG is developed from the iron-cored “bifilar” coil topology based on Aleksas Pašilis's and Eleonora Guseinovien's patent (Lithuania) in an attempt to overcome the problems with current rotary type Generators, which have so far been dominant on the market.

    One of the problems is Armature Reactance, which is usually bigger than Resistance.

    The circumstance creates difficulties for designers and operators of the Generator.

    "...That is why patented technology is offered to partially remove or absolutely neglect the reactance of the machine. We used The Simulation Software EMS:

    To get to the flow direction of the Magnetic Flux Densities through the system, which the same is as expected to be.

    To test to a real machine. We found the opportunity of the motion simulation, but there wasn't much time for that investigation.

    We have made only a 1/5 sector of the generator to keep the resources at minimum.

    We used also a Finite Element Magnetic Model (FEMM) to visualize the effects of the system.

    To visualize the effects of the 3 phase current to the flow of flux and densities on the system."




     

  • Zbigniew Usarek - PHD.Student
    Zbigniew Usarek - PHD.Student
    Gdansk University of Technology

    Non-destructive testing (NDT) team at the Solid State Physics Department of the Faculty of Applied Physics and Mathematics cooperates on the broad scale with industry representatives in developing methodology and apparatus for magnetic NDT.



    Currently we are optimizing Pipeline Inspection Gauge (PIG) with Magnetic Flux Leakage (MFL) system to evaluate technical condition of pipelines. Such system consists of magnetizing yoke and magnetic field sensors. Working PIG can reach velocity of even 10 m/s due to liquid media pressure. Our job is to model effect of velocity on eddy currents generation and hence distortion of MFL signal.

    We have heard about the EMWorks software as a result of searching for Finite Element Modelling (FEM) software which would be adequate for our purposes. After the review of various offers we stated that EMS has all features we need. The great advantage of this package is that it is based on SolidWorks. Thanks to this design of even very complex models becomes child's play. My first magnetostatic model in EMS was created in just a few minuts! I highly recommend EMWorks software for all those who need friendly interface as well as professional FEM software.


  • Michael Rattray - Engineer
    Michael Rattray - Engineer
    Magnetic Products, Inc.

    Magnetic products inc. (MPI), based in southeastern Michigan, is a worldwide provider of both magnetic and non-magnetic material handling solutions. MPI leads the industry by continuously engineering inventive magnetic equipment and advancing customer education though significant investments in research and development and proactive product training.

    "EMS has been a valuable analysis tool for Magnetic Product Inc. (MPI). The program itself works well in conjunction with inventor and what is most valuable is the hands-on responsive support we receive from EMWorks when we need help."

    We are pleased with the EMWorks team and hope to see more of the same customer-focus in 2014.

     

  • Henk Te Kronnie - Mechanical Engineer
    Henk Te Kronnie - Mechanical Engineer
    Electrotechnische Industrie ETI b.v

    ETI has been designing and delivering reliable transformers and inductors for industrial applications for more than 50 years. ETI also delivers transformers for medical research and railway systems. In addition, ETI designs and produces Wiring Harnesses, Power Units, DC Power Supplies and Constant Voltage Transformers that are used in its Line Conditioners.

    "The EMS for Autodesk Inventor package has been a great tool for ETI. The software is user friendly, very easy to learn, and most important it has been very useful in the evaluation and designing process. EMWorks Support has been prompt and helpful."

     

  • Paul Von Dollen - Graduate Student
    Paul Von Dollen - Graduate Student
    University of California, Santa Barbara

    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. The main campus is located on a 1,022-acre (414 ha) site near Goleta, California, United States, 8 miles (13 km) from Santa Barbara and 100 miles (160 km) northwest of Los Angeles. Tracing its roots back to 1891 as an independent teachers' college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system.



    "I used the AC Magnetics module within the EMS software to model electromagnetic coupling to a lab-scale molten metal charge.  This modeling was meant to investigate the efficiency and efficacy of inductive coupling as a means to heat and stir a metal solvent for a high temperature crystal growth process.  I found the software to be well integrated with Solidworks, with intuitive menus and feature commands.  The array of parameters available for adjustment was quite broad; I was able to easily set up a good proxy for my actual experimental setup.  The ability to copy/paste an entire study in one step made it especially quick to vary parameters and compare results.

     

    EMS software represents a powerful and robust tool for anyone conducting research, design or development of systems involving electromagnetics."
     

  • Jaromir Koniarski - Graduate Student
    Jaromir Koniarski - Graduate Student
    Silesian University of Technology

    The Silesian University of Technology (SUT) is one of the biggest universities of technology in Poland, with more than 60-years successful tradition in education, research and development as well as cooperation with industry. 



    The Faculties cover the whole range of engineering disciplines, as well as elements of management, sociology and administration. The number of students in all types of courses in the academic year 2013/2014 is about 27 000. Educational and research activities benefit from large number of modern lecture halls and advanced laboratories and are carried out by remarkable university staff consisting of over 1700 academic teachers including 300 professors and DSc degree holders.



    …”The installation of EMS for Inventor is very easy, it also has a lot of analysis options. The interface is intuitive and clear. EMS for Inventor allows for fast and accurate linkage analysis in the field of electro-thermal and magnetic as for the design of highly complex projects is very useful. EMS saves time and avoids the problems associated with the transformation of files between different programs - in this way we gain time, which in the case of very complex analysis is priceless. The Support Team of EMWorks is very professional and very helpful - if an error is detected; the reaction and giving solution is very fast…”

    Read PDF Document

  • Suleyman SAROGLU - R&D Electrical Engineer
    Suleyman SAROGLU - R&D Electrical Engineer
    Akar Asansor



    "As Akar R&D Team, improving & implementing new technologies to elevator motor design has always in our first priority. In pursuit of progress our way come across with EMWorks' Solidworks EMS add-ins two years ago. Since then EMS always gave us reliable electromagnetic analyses and viable targeted solutions. Most importantly, EMS analyses overlapped perfectly with test results for our spring applied electromagnetic brakes.  

    Their integration with Solidworks, elevated our team work as mechanical & electrical harmony. When needed, the result-oriented technical team was there for us until the job is done.

    Hereby we can recommend EMS add-ins for Solidworks without any hesitation."

     

  • Louis Moskven - Mechanical Engineering Student
    Louis Moskven - Mechanical Engineering Student
    University of British Columbia

    Our design will revolve around the analysis of a new electron catcher (Faraday cup) and design an Electron Catcher for target station EMS from EMWorks has been a valuable tool for integrating electromagnetic component design into our SolidWorks environment.

    EMS has allowed us to simplify the development stages for RF and high power AC componentry by reducing the number of experiments required during prototyping. The intuitive user interface combined with the simple transition between the design environment and finite element suite ensure that any required changes to a design can be completed, implemented, and brought back into the EMS environment for further simulation in a very short timeline.

    Thank you for your valuable tool and help

    triumf website: www.triumf.ca

  • Rui Zhang - undergraduate engineering student
    Rui Zhang - undergraduate engineering student
    Dartmouth College

    I used EMWorks for an undergraduate biomedical engineering project. I am thankful that EMWorks is very well integrated with SolidWorks, which makes constructing 3D geometries straight-forward. The step-by-step tutorial of EMWorks also helped me in learning the software. Many other multiphysics software applications don't have easy-to-use tutorials. Overall, EMWorks has been helpful software for my project.

  • Sebastian Bock
    Sebastian Bock
    University of Siegen Germany

    I got used to EMS very fast. I just needed two days to get a first result. Especially the simplicity to apply boundary conditions or to refine the mesh at certain surfaces or solids is great! And also the options to plot the results are very nice and intuitive. In the end the results of the simulation matched very well with the experimental values.

  • Nikola Radakovic, R&D Engineer
    Nikola Radakovic, R&D Engineer
    Institute of Atomic and molecular Sciences, Academia Sinica, Taiwan

    Our magnetic bearing design requires dynamic and electromagnetic FEA verification. EMS solver is fully compatible with Solidworks and it allowed us a very short learning curve. With basic knowledge of Solidworks we have mastered EMS in less than two working days.

  • Paul M. Kurowski, Assistant Professor
    Paul M. Kurowski, Assistant Professor
    Western University

    I used EMS to teach the third year undergraduate course "Finite Element Methods for Mechatronic Systems Engineering". Students were already familiar with and SOLIDWORKS Simulation and Electromagnetics; they had no troubles learning EMS and working on meaningful assignment problems all within one lab. The use of EMS definitely added value to the course and enhanced students' learning experience.

  • Amir Vedadi, a student
    Amir Vedadi, a student
    Oxford Brookes University

    EMS is quite useful program for finding electric and magnetic fields in unorthodoxly shaped assemblies. It has been especially helpful for me when I was trying to design circuits with high voltage and current applications, which are potentially lethal for students. EMS comes with a set of tutorials that guide users through the model setup and demonstrate a large variety of applications. Overall, a very professional electromagnetic simulation software.

  • Michelle Wei, Massachusetts General Hospital
    Michelle Wei, Massachusetts General Hospital
    Harvard Medical School

    The EMS magnetostatics module has been amazing for designing permanent magnet configurations to optimize magnetic field shape. The interface with SolidWorks is really intuitive and I was able to start using it quickly. Even better, the customer service and tech support have been wonderful! I highly recommend this software.

  • Raffaello Biagini, Student
    Raffaello Biagini, Student
    The University of Genoa

    I started using EMS because I was looking for a software that could compute accurate 3D magnetic field results, and at the same time provide all the associated variables, such as inductance, force, losses etc. Not only EMS perfectly fulfilled my simulation demands, but I also benefited from the great tech. support, which made my experience with EMS even more enjoyable.

  • Önder Sönmez - Student
    Önder Sönmez - Student
    Ankara Yildirim Beyazit University

    I used EMS software for the induction heating analysis of a gear. The transient magnetic analysis helped me obtain good simulation results which corroborate what is mentioned in the literature.

    The software has a user-friendly interface. Moreover, The EMS license comes with a set of pre-defined tutorials and Demo Viewer examples to guide the users and help them get familiar with the software. I had a good experience with EMS. The induction heating examples that are available in EMS Demo Viewer helped me learn more about EMS.

    It is a powerful simulation tool that I would recommend to anyone who is doing projects on induction heating.





     

  • Bhagwan Singh - Student
    Bhagwan Singh - Student
    Rice University

    Over the past year, I’ve had the opportunity to use EMWorks to aid in my study of magnetic coils on our apparatus. With this tool, we can model many types of coil designs, such as using thin magnet wire, and water cooling it, or instead going with hollow-core type of wiring (with finite diameters and realistic spiraling modeled in SW) and running cool water through that. We can then see our magnetic field profiles all around the coils, and of course in the center of our Helmholtz configuration, where we would like to ensure very flat magnetic fields. In a complex environment such as a cold-atom experiment, I want to ensure that the vacuum chamber geometry itself would not impede our ability to ramp up and down the current on the magnetic coils, due to eddy currents. By tuning the materials, and in real-time designing components the way they would be engineered, we will be able to fine-tune our apparatus to our needs and constraints. In the future, we will continue to evaluate the eddy currents present in our system as we try different parameters for our magnetic field control (see image).

    One great aspect to continue expanding on would be the video tutorials highlighting the many ways to get students started on using EMWorks for their applications. As a beginner, setting up the basic parameters like the “air geometry” was made simpler by watching someone show those steps specifically through SolidWorks.





    (
    The image shows a cut-away view from our new vacuum chamber. We want to verify the compatibility of a new magnetic coil system with the chamber. )

  • Nihal Singh Sekhon
    Nihal Singh Sekhon
    Eastvale STEM academy, Eleanor Roosevelt High School

    EMS by EMWorks was instrumental in my high school science project. My project required me to find the force produced when a rotating Halbach array is placed above a conductive surface. By carrying out multiple simulations using EMS I determined how changes in the dimensions of the wheels affected their produced thrust and how to create an optimized wheel.  Even though I am a high school student with limited simulation experience it was easy for me to learn how to use EMS in a few days. The integration with Solidworks allowed me to rapidly change designs and test multiple configurations. The judges at the Riverside County science fair had a sufficient degree of trust in the EMS simulation results that I was awarded second prize and a certificate of achievement purely based on the simulation data. 

  • Peng Ying
    Peng Ying
    Massey University of New Zealand

    I used Electromagnetic Simulation (EMS) to investigate the electromagnetic behaviour of Axial Flux-Segmented Rotor-Switched Reluctance Motors (AFSSRMs). A three-dimensional finite element model is developed in SolidWorks. As the EMS is a Gold Certified add-in to SolidWorks, there is no technical boundary in between, enabling me to conduct Finite Element Analysis (FEA) on the model and complete the project on time.

    In terms of the setup of the simulation in EMS, the installation instructions are easy to follow, the project tree follows a logical order, and the model parameters can be alternated easily. After each simulation, the result can be saved automatically, and different section views allow the user can analyse simulation results more comprehensively. Results from different studies can be compared, and a range of variables can be plotted. Those plots can be exported to Word documents or saved locally with high resolution.

    Engineer experts from EMWorks are friendly and helpful, and they fix many simulation issues. There are plenty of learning resources available on YouTube/Webinars. The tutorial about switched reluctance machines is extremely helpful in building the simulation. The individual project is completed on time with high quality. I appreciate all the help and support from EMWorks, and I will recommend EMS to colleagues who investigate motor behaviours. 

  • Markus Ramsauer
    Markus Ramsauer
    FOSBOS Traunstein

    I wanted to express my appreciation for EMS and the benefits it has provided me. Using the software has saved me a significant amount of time and money by eliminating the need for many prototypes. Without EMS, I estimate that it would have taken me at least a week and over 100€ to analyze one variable or problem. Instead, I was able to complete a Simulation overnight and review the results the next day. Additionally, EMS made it easier for me to identify problems without access to expensive measurement equipment.

    I also believe that EMS has even more potential than I have been able to utilize in my simpler simulations, and I can see how it could be a valuable tool for both larger and smaller companies during product development. Furthermore, I found it easy to get started with EMS because it is similar to SolidWorks Simulation. I was able to learn the basics within a week through trial and error and a few tutorials.

    I also want to highlight the exceptional support provided by you and your company. I have not received such helpful and responsive support in a long time, and I appreciate that you offer direct support for students, something that is not always offered by other companies.

  • Stjepan Juric
    Stjepan Juric
    University of Split Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture

    I am a member of a student team that is working on understanding of axial flux electric motors and generators. Using EMWorks we were able to do electromagnetic, structural and thermal analysis of different kinds of motors and generators. Software is very intuitive and easy to use, learning time is a lot shorter than in other similar software packages. There are a lot of tutorial videos on youtube which is also really beneficial for understanding many of the funcionalities of the software. The integration inside Solidworks is flawless and output pictures of the simulation results are very informative. EMWorks support team was really helpful when we encountered some problems in defining simulation parameters. We highly recommend using EMWorks!

Eine Transformator-Berechnungssoftware

EMS dient sich als Transformator-Design-Software. EMS kann verwendet werden, um kritische Transformator-Entwurfsparameter virtuell zu untersuchen, einschließlich:

Energiespeicher

Ein Transformator darf keine Energie speichern, sondern sofort von Eingang zu Ausgang übertragen. Leider speichern Transformatoren in der Realität unerwünschte Energie. EMS berechnet die Streuinduktivität, die die gespeicherte Energie zwischen Wicklungsbereichen darstellt, die von nichtmagnetischen Medien besetzt sind. In ähnlicher Weise berechnet EMS die gegenseitige Induktivität, die die Menge an unerwünschter gespeicherter Energie im Magnetkern und kleinen Luftspalten angibt.

Verluste und Wärmemanagement

EMS kann den maximalen Temperaturanstieg des „Hot Spots“ an der Kernoberfläche innerhalb des Wicklungszentrums berechnen. Diese Berechnung ist hilfreich bei der Bestimmung der kleinsten Kerngröße, die den erforderlichen Wirkungsgrad der Stromversorgung erfüllt, ohne die maximale „Hot Spot“ -Temperatur zu überschreiten. Um diesen Temperaturanstieg zu berechnen, berücksichtigt EMS alle Transformatorverluste, einschließlich Wirbelverlust, Hystereseverlust, Kernverlust, Wicklungsverlust und Wärmeverlust sowie die umgebenden Flüssigkeitstemperatur- und Konvektionseigenschaften.

Kernauswahl

EMS berechnet die magnetische Flussdichte und die Sättigungsniveaus im Kern, die bei der Auswahl des richtigen Kernmaterials, der richtigen Form und Größe für jede Frequenz und gewünschte Leistungsabgabe hilfreich sein können. Der Konstrukteur des Transformators zielt letztendlich darauf ab, eine Form zu wählen, die einfach herzustellen ist, eine möglichst kleine Kerngröße und das kostengünstigste Kernmaterial, wobei die erforderliche Leistung eingehalten wird, ohne den Kern zu sättigen.

Unterbrechungs- und Kurzschlusstests

Leerlauf- und Kurzschlusstests eines Transformators sind kritisch, aber kostspielig und zeitaufwändig. Mit EMS kann der Designer diese Tests virtuell genau und effizient ausführen.

Isolationskoordination

EMS berechnet den dielektrischen Durchschlag, der für die Auswahl der richtigen Durchführungen, Überspannungsableiter und anderer isolierender Infrastrukturen von entscheidender Bedeutung ist. Diese Art der Berechnung hilft dem Konstrukteur, die verschiedenen Isolationskoordinierungsstandards zu erfüllen.

Kurzschlusskräfte

EMS berechnet die Magnetkraft, die sowohl auf die Wicklungen als auch auf das Kernmaterial wirkt, sowie die Spannung und strukturelle Verschiebung aufgrund dieser Kräfte. Diese Art von Berechnungen ist hilfreich, um die strukturelle Integrität des Transformators zu gewährleisten.

Eine Motorberechnungssoftware 

EMS dient sich als Motorkonstruktionssoftware. Sie kann verwendet werden, um kritische Konstruktionsparameter für Elektromotoren virtuell zu untersuchen, einschließlich:

Parameterschätzung

Wicklungsinduktivität und -widerstand spielen eine wichtige Rolle bei der Steuerung und Zustandsschätzung von Elektromotoren. Das Beispiel hierfür wäre eine Phasenstromregelung in einem SRM-Motor oder eine Rotorpositionsschätzung in einem sensorlosen BLDC. EMS kann diese Parameterwerte für einen gewünschten Satz von Frequenz- und Strombedingungen bestimmen.

3D-Modellierungsprobleme

EMS ist eine vollständige 3D-Modellierungsplattform. Dies ermöglicht die Simulation einiger wichtiger Topologien und Effekte, die ansonsten nicht analysiert werden können:
- Das Schwenken von Schlitzen oder Rotorpolen ist eine übliche Technik zur Reduzierung der Rastkraft. Die Ergebnisse können nur geschätzt werden, wenn die Wechselwirkung zwischen Stator und Rotor in allen drei Dimensionen erfasst wird.
- Fortgeschrittene Maschinentopologien wie Axialfluss- und Querflussmaschinen arbeiten von Natur aus mit 3D-Flussverteilung und sollten als solche behandelt werden.
-Endwicklungen haben einen erheblichen Einfluss auf den Wicklungswiderstand sowie dessen Streuinduktivität.

Drehmoment

EMS kann transiente und stationäre Drehmomentprofile für verschiedene elektrische Maschinentopologien wie Permanentmagnet-Wechselstrommaschine, BLDC, geschaltete Reluktanz, Induktion usw. berechnen. Drehmomentergebnisse für verschiedene Rotordrehzahlen und Wicklungsströme bestimmen die optimalen Betriebsbedingungen. Darüber hinaus hilft EMS, das Rastmoment zu minimieren, indem seine Größe für verschiedene Luftspaltlängen oder Teilschlitzabstände verglichen wird.

Kernmaterial

Eine erfolgreiche Maschinenkonstruktion hängt von der genauen Darstellung des nichtlinearen Phänomens im Kernmaterial ab, wie z. B. Flusssättigung, Wirbelstrom und Hystereseverluste. EMS wird mit einer Bibliothek vordefinierter fester und laminierter Kernmaterialien geliefert. Designer können verschiedene Materialien hinsichtlich Sättigung, Kernverlusten und Gesamteffizienz leicht vergleichen. Kern- und Wicklungsverlustergebnisse können mit dem thermischen Löser von EMS gekoppelt werden und bestimmen den Temperaturanstieg und die Kühlanforderungen.

Form und Größe

Der Radius, die Länge und die Anzahl der Pole der Maschine bestimmen maßgeblich das Drehmoment und die Nennleistung. Feinere geometrische Merkmale des Magnetkreises haben jedoch einen tiefgreifenden Einfluss auf die Maschinenleistung. Beispielsweise beeinflusst die Form der Käfigstangen in einem Induktionsmotor, wie sich das Drehmoment mit dem Rotorschlupf ändert. Alle diese Parameter können innerhalb von EMS leicht variiert werden, um ihre Auswirkung auf die Leistung des Motors zu bewerten.

Parasitäre RLC-Extraktion

EMS kann als parasitärer RLC-Extraktor verwendet werden. Das heißt, es berechnet genau den Widerstand, die Induktivität und die Kapazität für jede beliebige elektrische und elektronische 3D-Struktur. Diese Berechnungen berücksichtigen den Proximity-Effekt, den Skin-Effekt, den dielektrischen und ohmschen Verlust sowie die Frequenzabhängigkeit. Mit anderen Worten werden sowohl DC- als auch AC-parasitäre RLC berechnet. Diese parasitären Werte sind maßgeblich an der Modellierung verschiedener elektrischer und elektronischer Geräte und Schaltkreise beteiligt, darunter:

Hochgeschwindigkeitselektronik

RLC-Modelle für elektronische Hochgeschwindigkeitsgeräte wie ICs, Leiterplatten, Gehäuse und passive On-Chip-Komponenten sind für die Untersuchung von Übersprechen und Verzerrung, Verbindungsverzögerungen und Klingeln sowie Erdungsprellen von entscheidender Bedeutung.

Stromrichter

RLC-Modelle sind nützlich bei der Simulation leistungselektronischer Geräte wie Sammelschienen, Kabel, Wechselrichter und Wandler, die üblicherweise in Stromverteilungsanwendungen verwendet werden, sowie Hybrid- und Elektrofahrzeuge.

Touchscreen-Modellierung

Die Modellierung von Touchscreens in heutigen Smartphones und Computern hängt stark von der genauen Berechnung der Kapazität der Bildschirmkabel ab.

NDT-Simulationssoftware

Elektromagnetische Felder und Wellen werden häufig in zerstörungsfreien Prüftechnologien eingesetzt. Da EMS den Magnetfluss und den Wirbelstrom genau berechnet, deckt es eine Vielzahl von elektromagnetischen ZfP-Techniken ab, darunter: Wirbelstromprüfung (ECT), Magnetflussleckage (MFL), Fernfeldprüfung (RFT), Magnetpulverprüfung (MPI) , Impulse Wirbelstrom (PEC) und die Wechselstromfeldmessung (ACFM). Das NDT-Screening beinhaltet üblicherweise die Bewegung der NDT-Sonden. EMS eignet sich gut zur Modellierung dieser Art von Bewegung, da EMS mit Solidworks Motion gekoppelt ist.

Vollständige Integration von Solidworks und Autodesk Inventor

Durch die nahtlose Integration von EMS in die drei wichtigsten CAD-Plattformen können Sie die kompliziertesten elektrischen Maschinen, Motoren, Generatoren, Sensoren, Transformatoren, Hochspannungsgeräte, Hochleistungsmaschinen, elektrischen Schalter, Ventile, Aktuatoren, Leiterplatten, Schwebemaschinen und Lautsprecher simulieren. Permanentmagnetmaschine, ZfP-Ausrüstung, Wechselrichter, Wandler, Sammelschiene, Induktor, Buchsen oder biomedizinische Ausrüstung. Sie müssen das Rad nicht "neu erfinden", sondern nur ein CAD-Modell vom Personal für mechanisches Zeichnen erwerben und Ihren Magneten oder Ihre Magnetsimulation sofort ohne Änderungen starten. Wenn Sie das erworbene CAD-Modell ändern möchten, müssen Sie nicht zum Zeichnungspersonal zurückkehren, da kommerzielle CAD-Pakete wie Solidworks parametrisch und hierarchisch sind. Ändern Sie es selbst "on the fly". Wenn die Zeichnungsabteilung oder der Kollege ein anderes CAD-Paket verwendet, können sie es höchstwahrscheinlich in Parasolid, ACIS, IGES, STEP, STL, CATIA oder ProE-Kernel für Sie speichern. Anschließend importieren Sie es in SOLIDWORKS®, Autodesk® Inventor® oder Ansys SpaceClaim und setzen Ihr elektromagnetisches Design fort.

Multi-Physik-Fähigkeiten

EMS ist ein echtes Multi-Physik-Software- und Simulationspaket. Sie können Ihr magnetisches, magnetisches und elektrisches Design mit thermischen, strukturellen und Bewegungsanalysen am selben Modell und Netz in einer problemlosen integrierten Umgebung koppeln, ohne Daten importieren oder exportieren zu müssen. Diese integrierte Multi-Physik-Umgebung bedeutet: kein Durcheinander, kein Herumspringen, kein Mischmasch, kein Chaos, keine Verwirrung und kein Durcheinander. Es bedeutet auch: Effizienz, Genauigkeit und Produktivität.

Elektrothermische Analyse

Ihr Design beinhaltet elektrothermische Aspekte? Einfach und freihändig! Überprüfen Sie einfach den stationären oder vorübergehenden Zustand "Paar zu thermisch" in den Studieneigenschaften. EMS berechnet automatisch die Joule-, Wirbel- und Kernverluste und führt sie dem thermischen Löser zu. Sie können leicht nicht elektromagnetische Wärmebelastungen hinzufügen, indem Sie Volumenwärme, Wärmefluss oder einfach eine feste Temperatur anwenden. Unter Berücksichtigung der Umgebungsbedingungen wie Konvektion und Strahlung berechnet EMS Thermal Steady State oder Transient die Temperatur, den Temperaturgradienten und den Wärmefluss und speichert sie im Ordner "Thermal Results".

Elektrostrukturanalyse

Aus dem gleichen Grund ist auch die elektromechanische Kopplung einfach und freihändig. Die Option "Mit Struktur koppeln" ruft den EMS-Strukturlöser auf, nachdem die lokale Kraftverteilung in relevanten Teilen zusätzlich zu den mechanischen Belastungen und Einschränkungen übertragen wurde, und berechnet dann die Verschiebungen. Die Beanspruchung und Dehnung werden anschließend abgeleitet und ebenfalls dem Ordner "Strukturelle Ergebnisse" hinzugefügt. Wenn die allgemeinere elektrothermomechanische Kopplung gewünscht wird, überträgt EMS sowohl die thermischen als auch die strukturellen Belastungen auf die thermischen und strukturellen Löser. Der thermische Löser wiederum speist die thermischen Lasten dem strukturellen Löser zu, der die endgültigen Verschiebungen berechnet, die sowohl die elektromagnetischen als auch die thermischen Lasten widerspiegeln, wobei die magnetischen, elektrischen, thermischen und strukturellen Umgebungen berücksichtigt werden.

Solidworks Motion Integration

Elektrische Maschinen und Antriebe umfassen normalerweise bewegliche Teile und Komponenten. Im Allgemeinen ist die resultierende Bewegung einfach rotierend wie Motoren oder translatorisch wie Linearantriebe. Trotzdem können einige Anwendungen wie MagLev- und Eddy-Strombremsung alle Bewegungen um sechs Freiheitsgrade provozieren. In diesem Fall kann nur EMS mit solch komplizierten Maschinen und Geräten umgehen. Warum? Weil EMS mit dem vielseitigsten und leistungsstärksten mechanischen Bewegungspaket, Solidworks Motion®, gekoppelt ist. Weitere Informationen zu diesem robusten Paket finden Sie unter: https://www.solidworks.com/sw/products/simulation/motion-analysis.htm Die Kopplung an SolidWorks Motion® ist wieder problemlos. Weisen Sie EMS nach dem Erstellen einer SolidWorks Motion®-Studie einfach an, sie zu koppeln. Das ist es und das ist alles.

Grabcad, 3dcontencentral, Traceparts

In den letzten Jahren ist eine wachsende Anzahl kostenloser 3D-CAD-Modelle - Millionen - in CAD-Depots wie grabcad.com, www.3dcontentcentral.com und www.traceparts.com verfügbar geworden. Folglich können Sie einfach ein CAD-Modell aus den Verwahrstellen holen, notwendige Änderungen vornehmen und sofort mit der Finite-Elemente-Analyse beginnen.

EMS-Ergebnisse

Mit EMS können Sie als Designer elektrische, magnetische, mechanische und thermische Parameter berechnen, darunter:
  • Elektrische Kraft
  • Elektrisches Drehmoment
  • Magnetkraft
  • Magnetisches Drehmoment
  • Elektromagnetische Kraft
  • Elektromagnetisches Drehmoment
  • Magnetflußdichte
  • Magnetfeld
  • Elektrisches Feld
  • Elektrischer Fluss
  • Aktueller Durchfluss
  • Wirbelstrom
  • Induktivität
  • Kapazität
  • Widerstand
  • Hystereseverlust
  • Wirbelverlust
  • Geschwindigkeit
  • Beschleunigung
  • Stress
  • Flusskopplung
  • Kernverlust
  • Die Spannung unterbrechen
  • Lorentz Force
  • Lorentz-Drehmoment
  • Hauteffekt
  • Näheeffekt
  • Magnetische Sättigung
  • Induzierte Spannung
  • Kraftdichte
  • Stromausfall
  • Temperatur
  • Temperaturgefälle
  • Wärmefluss
  • Zurück EMF
  • Elektrische Flussdichte
  • Impedanz
  • Ohmscher Verlust
  • Verschiebung
  • Belastung
What is EMS?

EMS is an electromagnetic field simulation software which calculates fields (electric / magnetic / flux / potential / eddy currents), circuit parameters (inductance / capacitance / resistance / impedance / flux linkage), mechanical parameters (force / torque), and losses (eddy/core/hysteresis/ohmic). EMS is a Gold Certified Add-in to SOLIDWORKS® and an Add-in to Autodesk® Inventor® which enables you to simulate the most intricate electrical machines, motors, generators, sensors, transformers, high voltage apparatus, high power machines, electrical switches, valves, actuators, PCB’s, levitation machines, loudspeakers, permanent magnet machines, NDT equipment, inverters, converters, bus bars, inductors, bushings, or biomedical equipment.

What is new in EMS 2021?

Features:
• Adaptive meshing for Electrostatic, Electric Conduction, Magnetostatic, and AC Magnetic with normal and high accuracy.
• Streamline for 3D plots.
• Transient Magnetic - Circuit: Support for Diode and block switches.
• Motion - Thermal: Continue thermal run for an already solved study coupled with motion.
• Flux, current, and voltage post-processors computation: Compute and plot all motion steps and all scenarios in case of motion or parametrized studies.
• AC Magnetic with Circuit coupling supports thermal solving.
• Steady-state thermal for transient magnetic studies with/without motion.

Enhancements:
• Multicore solver: New solver engine (PetsC) has been added to improve speed/accuracy in certain study configurations.
• Continue adaption run when a study is valid and on original studies, not a child motion study or child parametrization study.
• Copy the last adaptive mesh into another study with the same or different type from the original study.
• Exclude extracted components on the selected entities when it doesn't have any child solid body.
• Transient magnetic: Continue transient thermal run to better reach steady state.
• AC Magnetic, Transient Magnetic: Inform the user if eddy effects are off, and there is a possibility to compute the Eddy Currents.
• Mesh options have been updated to control the default values on manual and adaptive meshing.
• Clean up leftover files for studies that are no longer present when loading an EMS document.
• Possibility to select a different solver for Thermal/Structural coupling, which is different from the Electromagnetic solver.
• Updated demo viewer and get-started models with recent documentation.
• Wound Coils: Possibility to change the AWG and the diameter from the filling factor when the change filling factor check box is enabled.

What is the minimum system requirement to run EMS?

- Operating System: Windows 7 and later, x64 bits- Windows 10 is recommended.
- RAM: 12GB and more.
- Disk space (SSD or faster is recommended): 100 GB free space and more.
- CPU: Core i7 @2.8GHZ and more.

What analysis options are there in EMS?

• Electrostatic
• Electric Conduction
• AC Electric
• Magnetostatic
• AC Magnetic
• Transient Magnetic

What kind of devices can I model using EMS?

Electromechanical, electromagnetic, and power electronics devices can readily be studied using EMS. Electromagnetic behaviour could also be investigated with EMS. Below is sample list of devices and applications classified by areas:

Electromechanical
• Motors and generators
• Linear and rotational actuators
• Relays
• MEMS
• Magnetic recording heads
• Magnetic levitation
• Solenoids
• Loud speakers
• Electromagnetic Brakes and Clutches
• Alternators
• Magnetic bearings

Electromagnetic
• Coils
• Permanent magnets
• Sensors
• NDT, NDE
• High power
• High voltage
• PCBs
• MRI Magnets
• Induction heating
• Bushings
• Switchgear
• Cables

Power electronics
• Transformers
• Inverters
• Converters
• Bus bars
• Inductors

Electromagnetic behaviour
• Insulation studies
• Electrostatic discharge
• Electromagnetic shielding
• EMI/EMC
• Electromagnetic exposure

What is Electrostatic Analysis? And what is used for?

Electrostatic is the branch of science that deals with the phenomena arising from stationary and/or slow-moving electric charges. Electrostatic approximation rests on the assumption that the electric field is irrotational, i.e. the curl of the electric field is null. From Faraday's law, this assumption implies the absence or near-absence of time-varying magnetic fields, i.e. the derivative of the magnetic field with respect to time is also null. In other words, electrostatics does not require the absence of magnetic fields or electric currents. Rather, if magnetic fields or electric currents do exist, they must not change with time, or in the worst-case, they must change with time only very slowly. In some problems, both electrostatics and magnetostatics may be required for accurate predictions, but the coupling between the two can still be ignored.

The EMS/Electrostatic module is primarily used for computing electric potential and electric field due to charges and voltages in insulators and conductors.It has many practical applications, including:

• High Voltage Components
• Insulating Systems
• EMC Compatibility
• Bus Bars
• MEMS
• Shielding
• Cables
• Switchgear
• Transformers
• Electronic tubes
• Capacitors
• Transmission Lines

What is Electric Conduction Analysis? And what is used for?

Electric Conduction is, in essence, based on the electrostatic approximation. Unlike the Electrostatic analysis which deals with insulators and electric conductors, the Electric Conduction deals with only conducting media which can sustain a current flow.

The EMS/ Electric Conduction module is primarily used for computing current flow in conductors due voltage differences. . It has many practical applications, including:

• Resistors
• Thin films
• Fuses
• Bus Bars
• Cables
• Shunts
• Solar cells
• Electronic circuits
• Biological medium
• Hardening
• Anodizing

What is Magnetostatic Analysis? And what is used for?

Magnetostatics is the study of static magnetic fields. In electrostatics, the charges are stationary, whereas here, the currents are steady or dc(direct current). As it turns out magnetostatics is a good approximation even when the currents are not static as long as the currents do not alternate rapidly. Furthermore, Maxwell's displacement current that couples the electric and magnetic fields is assumed to be null.

In EMS/ Magnetostatic analysis, the Gauss's law for magnetism, i.e. divergence of magnetic flux density is null, and Ampère's law, i.e. the curl of the magnetic field is equal to the static electric current density, are invoked to compute the magnetic field and its related quantities due to electric currents and permanent magnets. It has many practical applications, including:

• Motors and generators
• Linear and rotational actuators
• Relays
• MEMS
• Magnetic recording heads
• Magnetic levitation
• Solenoids
• Loud speakers
• Electromagnetic Brakes and Clutches
• Magnetic bearings
• MRI
• Sensors

What is AC Magnetic Analysis? And what is used for?

AC, or alternating current, Magnetic, is the study of magnetic fields due to alternating, or time harmonic, currents. Similar to Magnetostatic, Maxwell's displacement current that couples the electric and magnetic fields is assumed to be null.

In EMS/AC Magnetic analysis, the Gauss's law for magnetism, i.e. divergence of magnetic flux density is null, and Faraday's law,, i.e. the induced electromotive force (emf) in any closed circuit is equal to the time rate of change of the magnetic flux through the circuit, are invoked to compute the magnetic field and its related quantities due to alternating electric currents and voltages. It has many practical applications, including:

• AC Motors and generators
• Sensors
• Coils and transformers
• Inverters
• Converters
• Bus bars
• Inductors
• NDT and NDE
• Inductive heating and hardening
• Eddy current meters
• Induction motors
• Eddy current brakes

What is Transient Magnetic Analysis? And what is used for?

Transient Magnetic, is the study of magnetic fields due to time varying currents, typically caused by surges in currents. Similar to Magnetostatic and AC Magnetic, Maxwell's displacement current that couples the electric and magnetic fields is assumed to be null.

In EMS/ Transient Magnetic analysis, the Gauss's law for magnetism, i.e. divergence of magnetic flux density is null, and Faraday's law,, i.e. the induced electromotive force (emf) in any closed circuit is equal to the time rate of change of the magnetic flux through the circuit, are invoked to compute the magnetic field and its related quantities due to permanent magnets and time varying electric currents and voltages. It has many practical applications, including:

• Switch on/off modes and failures in power electronic devices
• Saturation in steel cores
• NDT and NDE
• Inductive heating and hardening
• Induction machines
• Levitators
• Motors and generators
• Actuators
• Loud speakers
• Alternators

What design parameter results can I get out of EMS/Electrostatic module?

The Electrostatic module outputs the following results for each study:

• Electrostatic potential
• Electric field
• Electric flux density
• Capacitance matrix
• Force
• Torque
• Stored energy
• Temperature
• Temperature gradient
• Heat flux

What design parameter results can I get out of EMS/Electric Conduction module?

The Electric Conduction module outputs the following results for each study:

• Electrostatic potential
• Electric field
• Current density
• Resistance
• Dissipated power
• Temperature
• Temperature gradient
• Heat flux

What design parameter results can I get out of EMS/Magnetostatic module?

The Magnetostatic module outputs the following results for each study:

• Magnetic field
• Magnetic flux density
• Current density
• Force density
• Inductance matrix
• Flux linkage
• Resistance
• Force
• Torque
• Stored energy
• Temperature
• Temperature gradient
• Heat flux

What design parameter results can I get out of EMS/AC Magnetic module?

The AC Magnetic module outputs the following results for each study:

• Magnetic field
• Magnetic flux density
• Current density
• Eddy current
• Force density
• Inductance matrix
• Flux linkage
• Resistance
• Impedance
• Core loss
• Eddy loss
• Hysteresis loss
• Ohmic loss
• Current
• Voltage
• Force
• Torque
• Stored energy
• Temperature
• Temperature gradient
• Heat flux

What design parameter results can I get out of EMS/Transient Magnetic module?

The Transient Magnetic module outputs the following results for each study at each time step:

• Magnetic field
• Magnetic flux density
• Current density
• Eddy current
• Force density
• Inductance matrix
• Flux linkage
• Impedance
• Ohmic loss
• Current
• Voltage
• Force
• Torque
• Stored energy
• Temperature
• Temperature gradient
• Heat flux

Can you give me some examples of design issues that EMS/Electrostatic module can address?

The Electrostatic module can help study a large number of devices and address numerous insulating and conducting phenomena. Below is just a partial list:

• Avoid rapid reduction in the resistance of an electrical insulator, that can lead to a spark jumping around or through the insulator, i.e. dielectric breakdown. This phenomenon is common in high voltage and high power applications.
• Avoid the ionization of a fluid surrounding a conductor, i.e. corona effect, in some applications such as power transmission equipments, transformers, capacitors, electric motors and generators.
• Produce corona in some other applications such as the manufacturing of ozone, scrubbing particles from air in applications such as air-conditioning systems, in nitrogen laser, when removing the unwanted electric charges from the surface of aircraft in flight, and in electrostatic copying.
• Assure that a high voltage machine is properly grounded.
• Reduce the electrostatic discharge in PCB and electronic designs.
• Assure the proper actuation force in MEMS and RF-MEMS designs.
• Avoid cross talk and distortion in electronic devices.
• Assure that a charged particle follows a desired trajectory.
• Compute the capacitance matrix, i.e. self capacitance and mutual capacitance, for high-speed electronic circuits and interconnects.
• Compute the electric field, electric flux, and voltage in insulators and around conductors.

Can you give me some examples of design issues that EMS/Magnetostatic module can address?

The Magnetostatic module can help study a large number of devices and address numerous magnetic and electromechanical phenomena. Below is just a partial list:

• Avoid saturation in magnetic devices. Magnetic saturation is a limitation occurring in ferromagnetic cores. Initially, as current is increased the flux increases in proportion to it. At some point, however, further increases in current lead to progressively smaller increases in flux. Eventually, the core can make no further contribution to flux growth and any increase thereafter is limited to that provided by air - perhaps three orders of magnitude smaller.
• Minimize the cogging torque. The cogging torque of electrical motors is the torque due to the interaction between the permanent magnets and the stator slots of a Permanent Magnet (PM) machine. Also termed as detent or 'no-current' torque, it is an undesirable component for the operation of such a motor. It is especially prominent at lower speeds, with the symptom of jerkiness.
• Lower cost and weight of magnetic devices by trimming excess material from ferromagnetic cores.
• Optimize magnetic and ferromagnetic circuits.
• Optimize coil winding and electromagnets.
• Optimize permanent magnet machines by studying the trade-off between samarium-cobalt, Neodymium-iron-born, ceramic, and Alnico magnets.
• Study the trade-off between soft magnetic and hard magnetic materials in terms of magnetization and demagnetization.
• Study the effect of B-H curves or magnetization curves on the performance of magnetic devices and circuits.
• Optimize the torque in motors while maintaining the driving current to a minimum.
• Avoid sparking and thus minimizing brush wear and electric noise in motors, solenoids, actuators, and other electromechanical devices.
• Optimize the force for linear solenoids and the torque for rotary solenoids without overheating the winding.
• Assure the proper Lorentz force in a speaker voice coil.
• Evaluate complex coil structures.
• Evaluate a multitude of permanent magnet configurations.

Can you give me some examples of design issues that EMS/Electric Conduction module can address?

The Electric Conduction module can help study a large number of devices and address numerous conducting and joule effects. Below is just a partial list:

• Protect electric and electronics equipment from over current by designing the appropriate fuse.
• Protect electric and electronics equipment from over voltage condition by designing the appropriate crowbar circuit that uses both fuses and shunts.
• Measure the current flowing though an electric circuit by designing the appropriate shunt.
• Assure the proper current flow in solar cells.
• Identify weak spots in electric and electronic circuits.
• Assure the proper amount of current flow in medical and biomedical devices.
• Avoid over-heating and melting any current carrying devices.
• Approximate heating and hardening penetrations in industrial applications.
• Assure the proper plating and anodizing in electro-chemical applications.
• Compute the resistance of arbitrary shaped conductors.
• Compute the electric current density in arbitrary shaped conductor.
• Evaluate the electric field strength and voltage distribution.
• Compute the temperature, temperature gradient, and heat flux due to Joule heating.

Can you give me some examples of design issues that EMS/AC Magnetic module can address?

The AC Magnetic module can help study a large number of devices and address numerous magnetic and eddy current effects. Below is just a partial list:

• Minimize eddy current losses and preserve efficiency of many devices that use changing magnetic fields such as iron core transformers and alternating current motors such synchronous motors, 3-phase Induction motors, single phase induction motors, switched reluctance motors, and synchronous generators.
• Optimize the Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE) equipment to better detect cracks and flaws in metallic parts. This technology is typically used in pipe inspection for the oil and gas industries. The aerospace industry also makes use of the NDT and NDE technologies.
• Optimize the coils design of metal detector to better detect metallic objects such mines, weapons, treasures, etc.
• Minimize the flux leakage and leakage inductance in transformers.
• Make sure that heat generated by the power transformer is within the regulatory bodies’ requirements.
• Minimize the skin effect in solid coils.
• Optimize the force for linear solenoids and the torque for rotary solenoids without overheating the winding.

Can you give me some examples of design issues that EMS/Transient Magnetic module can address?

The Transient Magnetic module can help study a large number of devices and address numerous magnetic, eddy current, and transient effects. Below is just a partial list:

• Take into account both eddy current and saturation in devices that use time varying magnetic fields such as loudspeakers and induction machines.
• Optimize the Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE) sensors to detect deep flaws and cracks.
• Study time varying devices such as magnetic heads, pulsed power transformers, and electromagnetic launchers.
• Study the response of pulsed power electronic equipment after a power failure or switch off.
• Design inductive heating devices.
• Calculate the motion of loudspeaker voice coils.
• Study the switch on/off modes, failures, AC excitation of devices with non-linear magnetic materials.
• Calculate the motion of electromechanical devices such as motors, generators, actuators, magnetic levitation, etc.

I have the initial permeability and the B saturation of my material, can you automatically generate the magnetization curve (i.e. BH curve)?

Yes. This capability is readily available in the curve browser.

Does EMS take into account the skin and proximity effects?

Yes.

Can EMS generate the flux lines?

Yes.

Do you couple to SolidWorks motion?

Yes. You can even choose to which SolidWorks motion study that you want to couple to.

Can EMS help me localize the region causing the dielectric breakdown?

Yes.

Does EMS compute the AC inductance and resistance matrices for AC Magnetic analysis?

Yes, if you choose not to neglect the eddy current.

Does EMS compute the dynamic inductance and resistance matrices for transient magnetic coupled to motion?

Yes, if you choose not to neglect the eddy current.

Does EMS support Delta and Y connections for coils?

Yes, using the coupling to circuit module.

Does EMS allow me to add a load to a transformer or wireless charger secondary coils?

Yes, by using the coupling to circuit module.

Can EMS compute the current rise time for a coil in transient magnetic analysis?

Yes. The current is automatically computed for voltage-driven coils.

Should I use Lorentz Force or Virtual Work to compute the force?

Lorentz Force is to be used for coils and the Virtual Work for the ferromagnetic material.