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Analytical Expression of the Magnetic Field Created by a Permanent
Magnet with Diametrical Magnetization

Van Tai Nguyen* and Tien-Fu Lu

Abstract—Cylindrical/ring-shaped permanent magnets with diametrical magnetization can be found
in many applications, ranging from electrical motors to position sensory systems. In order to correctly
calculate the magnetic field generated by a permanent magnet of this kind with low computational
cost, several studies have been reported in literature providing analytical expressions. However, these
analytical expressions are either limited for an infinite cylinder or for computing the magnetic field
only on the central axis of a finite cylinder. The others are derived to calculate the magnetic field at
any point in three-dimensional (3D) space but only with low accuracy. This paper presents an exact
analytical model of the magnetic field, generated by a diametrically magnetized cylindrical/ring-shaped
permanent magnet with a limited length, which can be used to calculate the magnetic field of any point
in 3D space fast and with very high accuracy. The expressions were analytically derived, based on
geometrical analysis without calculating the magnetic scalar potential. Also, there is no approximation
in the derivation steps that yields the exact analytical model. Three components of the magnetic field
are analytically represented using complete and incomplete elliptical integrals, which are robust and
have low computational cost. The accuracy of the developed analytical model was validated using
Finite Element Analysis and compared against existing models.

1. INTRODUCTION

Permanent magnets have been widely utilised in various applications [1–10]. Amongst them, cylindrical
and ring shaped permanent magnets with diametrical magnetization have been widely used in electrical
motors [11–14] and in position sensory systems [15–18] including human intention recognition [19]. The
requirement for an accurate and fast-computed analytical expression of the magnetic field generated by
a diametrically magnetised permanent magnet that can facilitate the design optimization of magnetic
devices and modelling dynamical systems [20, 21], leads to various ways of expressing the magnetic field
of a permanent magnet of this kind. Since it can be time-consuming to use Finite Element Method,
analytical expressions with minimal computational effort have been attracting attention. This is very
useful, especially when modelling dynamic systems, such as the movement of magnetic nanoparticles
in a magnetic field gradient [22]. Moreover, a fast-computed analytical expression of the magnetic field
can help save computational time to solve an optimization problem with variations over a large number
of parameters [23].

Currently, based on elliptic integral functions, three dimensional (3D) analytical expressions of
the magnetic field created by a permanent magnet with radial and axial magnetization have been
derived [24, 25]. For these magnets, the surface charge density is constant. However, in the case of
a diametrically magnetised permanent magnet, this parameter is dependent on the angle φ between

the magnetization vector J⃗ and the normal unit vector n⃗ to the cylindrical surface which is equal
to J cosφ [22]. Therefore, the nonconstant surface charge density needs to be taken into account
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when deriving the analytical expressions of the magnetic field generated by a permanent magnet with
diametrical magnetization. There are some analytical expressions of the magnetic field produced by
a diametrically magnetised permanent magnet. However, they are developed only for an infinite
cylinder [26, 27], or for computing the magnetic field only on the central axis of a finite cylinder [28].
In order to address these limitations, most recently, Caciagli et al. [22] presented an analytical model,
based on complete elliptic integrals, to calculate the magnetic field created by a diametrically magnetised
cylindrical permanent magnet with a finite length, at any point in (3D) space. Nonetheless, in the steps
of derivation, the scalar potential is approximately expressed with the complete elliptic integrals; this
caused an error associated with the final expressions of the magnetic field, because these final expressions
were derived by taking the derivatives of the approximated scalar potential directly. This error is
demonstrated in this paper under Section 3, Finite Element verification and discussion. Fontana et
al. [29] presented the double integration expression, which can be used to calculate the magnetic field
created by a permanent magnet with diametrical magnetization at any point of interest in 3D space.
However, the double integration expression can be solved only numerically that can be time-consuming
when high accuracy needs to be achieved.

To eliminate/reduce the aforementioned error due to the approximation and improve the
computation costs, this paper presents the work leading to an exact analytical expression of the magnetic
field created by a diametrically magnetised cylindrical- and ring-shaped permanent magnet at any point
of interest in 3D space, based on the Coulombian approach [30] which has been used to analytically
model the magnetic fields created by arc-shaped permanent magnets with radial magnetization [31, 32],
ring-shaped permanent magnets with axial and radial magnetization [24, 33], tile permanent magnets
with radial magnetization [25] and tangential magnetization [34, 35]. The exact final model of the
magnetic field was analytically derived, based on geometrical analysis without the need to calculate the
scalar potential; and there was no approximation in the derivation steps. All three components of the
magnetic field can be expressed using complete and incomplete elliptic integrals that are robust and
their computational efforts are minimal [22, 36–39]. The accuracy of the developed analytical model
was validated against 3D FEA results.

The rest of this paper is organised as follows. Section 2 presents the mathematical derivation of
the analytical expressions of the axial, azimuthal and radial components of the magnetic field generated
by a cylindrical/ring shaped permanent magnet with diametrical magnetization. Section 3 compares
the results of the developed model with those of Finite Element Analysis and with those of the existing
model recently derived by Caciagli et al. [22]. Section 4 draws the conclusions.

The MATLAB codes of the derived analytical expressions in this paper will be made available in
public domain for readers to use once the manuscript is accepted for publication. The codes will be
published in the authors’ profiles on www.researchgate.net and on the authors’ Adelaide University
profile pages.

2. MATHEMATICAL DERIVATION

A diametrically magnetized cylindrical permanent magnet with parameters is illustrated in Figs. 1(a)

and (b); its radius is R; its thickness is h; its magnetization J⃗ is assumed to be uniformly diametrical
and along axis Y .

The derivations are based on the Coulombian model in a cylindrical coordinate system (r, α, z)
with an azimuth coincident with axis X (Fig. 1(a)). According to the Coulombian model, the magnetic
field intensity at any observation point K (Fig. 1) produced by a permanent magnet in the 3D space
can be expressed as follows [31]:

H⃗K =
1

4πµ0

∫∫
s

σs∣∣∣⃗i−⃗i′∣∣∣3
(⃗
i−⃗i′

)
ds+

∫∫∫
v

σv∣∣∣⃗i−⃗i′∣∣∣3
(⃗
i−⃗i′

)
dv

 (1)

The volume charge can be defined as σv = −∇⃗J⃗ the divergence of the magnetization vector J⃗ is equal to
zero because it is uniformly diametrical; hence, the magnetic field intensity can be calculated using only
the surface charge component, which is the first part of equation in the larger parentheses of Eq. (1).
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(b)(a)

Figure 1. Diametrically magnetized cylindrical permanent magnet; (a) Isometric view and (b) front
view.

The surface charge can be calculated as σs = J⃗ n⃗ = J cos θ = J sin (α+ β); here θ is the angle between

the magnetization vector J⃗ and the normal unit vector n⃗ to the cylindrical surface (Fig. 1(a)), α is the
azimuthal angle and β = π/2− θ − α.

After taking the projection of
(⃗
i− i⃗′

)
on the radial, azimuthal and axial directions (i⃗r, i⃗α and i⃗z

are the unit vectors respectively), with the consideration that the volume charge has no contribution to
the magnetic field, Eq. (1) can be rewritten in the double integration form as follows [29]:

H⃗K =
JR

4πµ0

∫ β=π

β=−π

z=h
2∫

z=−h
2

(r −R cosβ) i⃗r + (−R sinβ) i⃗α + (zK−z) i⃗z(
R2+r2−2Rr cosβ+(zK−z)2

) 3
2

sin (α+ β)dzdβ (2)

After analytically integrating each component of the magnetic field along the axial, azimuthal and radial
directions in Eq. (2), the analytical expressions of the axial, azimuthal and radial components of the
magnetic field were obtained as follows:

2.1. The Axial Component

Table 1. Parameters used in Eq. (3).

Parameters Definition

a
(
zK−h

2

)2
+R2+r2

b
(
zK+h

2

)2
+R2+r2

c 2Rr

p 2c
c−a

u 2c
c−b

The analytical expression of the axial component H
(3D)
K(z)(r, α,zK) was obtained with the parameters

illustrated in Table 1:

H
(3D)
K(z) (r, α,zK) =

JR sinα

πµ0

(
(aK[p] + (c− a)E[p])

c
√
a− c

− (bK[u] + (c− b)E[u])

c
√
b− c

)
(3)
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Here, K [m] =

∫ π
2

0

dθ√
1−msin2θ

is the complete elliptic integral of the first kind, (3a)

E [m] =

∫ π
2

0

√
1−msin2θ is the complete elliptic integral of the second kind. (3b)

2.2. The Azimuthal Component

Table 2. Parameters used in Eq. (4) and Eq. (5).

Parameters Definition

a R2+r2

b 2Rr

c h
2 − zK

d h
2 + zK

t cosβ

ζ
√
1−t2

η
√

b(t+1)
a+b+c2

κ
√

b(t−1)
a−b+c2

λ
√

a−bt+c2

a+b+c2

ν ArcSin
[√

t+1√
2

]
ξ 2b

c2+a+b

ς 2b
a+b

χ ArcSin
[√

c2+a−bt
c2+a+b

]
ψ c2+a+b

c2+a−b

Υ 4r2

c2+4r2

The analytical expression of the tangential component H
(3D)
K(α)(r, α, zK) was obtained with the

parameters illustrated in Table 2 as follows:

H
(3D)
K(α) (r, α,zK)=

JR2cosα

2πµ0
(δ (t2, a, b, c)− δ (t1, a, b, c) + δ (t2, a, b, d)− δ (t1, a, b, d)) (4)

where, the auxiliary function δ is as follows:

δ (t, a, b, c) = − 2cλ

b2ζ
√
a− bt+c2

(−aζF [ν, ξ] +(a− b)ζPi [ς, ν, ξ] +(t+ 1)bκF [χ, ψ] + (t+ 1)(
−
(
−a+ b−c2

))
κE [χ, ψ]

)
;

Here, F [φ,m]=

∫ φ

0

dθ√
1−msin2θ

is the incomplete elliptic integral of the first kind, (4a)

E [φ,m]=

∫ φ

0

√
1−msin2θ is the incomplete elliptic integral of the second kind, (4b)

Pi [n, φ,m]=

∫ φ

0

dθ(
1− nsin2θ

)√
1−msin2θ

is the incomplete elliptic integral of the third kind. (4c)
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2.3. The Radial Component

The analytical expression of the radial component H
(3D)
K(r)(r, α, zK) was obtained with parameters as

illustrated in Table 2 as follows:

H
(3D)
K(r)(r, α,zK) =

JR sinα

2πµ0
(γ(t2, a, b, c, r, R)−γ(t1, a, b, c, r, R)+γ(t2, a, b, d, r, R)−γ(t1, a, b, d, r, R)) (5)

where, the auxiliary function γ is as follows:

γ (t, a, b, c, r, R) =
(
2cλ

(
(a+ b)

(
a− b+c2

)
Rκ (1 + t)E [χ, ψ] + (a+ b) (br − aR) ηζF [ν, ξ]

+(a+ b+ at+ bt)bRκF [χ, ψ] +(aR− br) aηζPi [ς, ν, ξ]) /
(
ηζb2(a+ b)

√
a+c2−bt

)
;

For the point K on the cylindrical surface, or when r = R, the radial component can be calculated as
follows:

H
(3D)
K(r)(r = R,α,zK) =

J sinα

4πµ0
(cf (r, c)+df (r, d)) (5a)

where, the auxiliary function f is expressed as follows:

f (r, c) =
(c2+2r2)K[Υ]− (c2+4r2)E[Υ]

r2
√
c2+4r2

The complete elliptic integrals of the first and second kinds K [m], E [m] are calculated using Eq. (3a)
and Eq. (3b).

The incomplete elliptic integrals of the first, second and third kinds F, E and Pi are calculated
using Eqs. (4a), (4b) and (4c).

The values of t1 and t2 in Eq. (4) and Eq. (5) can be set to be 0.999999999 or closer to 1 and
−0.999999999 or closer to −1 respectively to avoid indefinite values whilst evaluating the expressions.

2.4. Calculation of the Magnetic Field Created by a Diametrically Magnetized Ring
Shaped Permanent Magnet

For a ring shaped permanent magnet with the parameters shown in Fig. 2, its inner radius is Rin;

its outer radius is Rout; its thickness is h; its magnetization J⃗ is assumed to be uniformly diametrical

and along axis Y ; the magnetic field H⃗K(ring) at point K can be computed using the principle of
superposition Eq. (6):

H⃗K(ring) = H⃗K (Rout)− H⃗K (Rin) (6)

Figure 2. Diametrically magnetized ring shaped permanent magnet.
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where H⃗K (Rout) is the magnetic field at point K created by a cylinder with the radius Rout, and

H⃗K (Rin) is the magnetic field at point K created by another cylinder with the radius Rin. These

two cylinders have the same J⃗ and thickness as those of the ring. Using the above expressions from
Eq. (3) to Eq. (6), the axial, azimuthal and radial components of the magnetic field of a diametrically
magnetized ring shaped permanent magnet can be calculated.

Knowing the magnetic field intensity, the magnetic flux density can be computed as follows:

B⃗K = µ0H⃗K (in the air space) (7)

and B⃗K = µ0H⃗K + J⃗ (inside the magnet) (8)

3. FINITE ELEMENT VERIFICATION AND DISCUSSION

The developed analytical expressions were implemented in MATLAB R2016b of MATHWORKS to
calculate the axial, azimuthal and radial components of the magnetic flux density, both in the air space
and inside the magnet, generated by a cylinder diametrically magnetised rare earth permanent magnet
(Fig. 1) with a radius R = 2.5mm and thickness h = 5mm; and magnetic remanence J = 1T, which
is generated by a scalar coercivity of 800000A·m−1 [22]. The Finite Element Analysis was carried
out using Electromagnetic simulation software (EMS) from EMWORKS and integrated with 3D CAD
INVENTOR software from AUTODESK.

The error between the results of the analytical expressions (BAnalytical) and those of the Finite
Element (FE) model (BFE model) is calculated using Eq. (9)

Error =

∣∣∣∣BAnalytical −BFE model

BFE model

∣∣∣∣×100% (9)

In Figs. 3(a), 4(a) and 5(a), the magnetic field components are presented with a solid line for those
computed using the derived analytical expressions of this paper, with circles for those computed using
the FE model and with a dotted line for those computed using the model by Caciagli et al. [22]. In
Figs. 3(b), 4(b) and 5(b), the errors are presented with a solid line for those of the derived analytical
expression of this paper, and with a dashed line for those of the Caciagli et al. model [22].

Figures 3(a) and (b) show that the developed analytical expressions can compute the magnetic field
precisely, with an average error of less than 2.5% for the axial component inside the magnet, except
for the field point near the centre of the cylinder (the radial distance r is less than 1mm) where the

Table 3. Errors of the analytical model derived in this paper and those of Caciagli et al. [22] tested
against the Finite Element (FE) model with r in the interval from 0mm to 12.5mm: * denotes the
errors inside the magnet, ** denotes the errors in the air space.

Compone-

nts of the

magnetic

field

Maximum error (%) Average error (%) Minimum error (%)

Model

derived in

this paper

Model by

Caciagli et

al. [22]

Model

derived in

this paper

Model by

Caciagli et

al. [22]

Model

derived in

this paper

Model by

Caciagli et

al. [22]

* ** * ** * ** * ** * ** * **

Axial

component
28.9 5.4 916.5 154

less

than

2.5

less

than

2

362.2 97.9 0.068 0.16 47.1 39.1

Azimuthal

component
0.16 3.36 828.5 254.9

less

than

0.16

less

than

1.5

249.4 112 0.007 0.49 24.04 34.24

Radial

component
0.2 1.8 819.7 174.3

less

than

0.2

less

than

1.5

237.8 91.2 0.005 0.002 2.6 47.67
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Table 4. Computational times.

Components of

the magnetic

field

Time-consumption (seconds)

Double

integration

model [29]

Analytical

model in

this paper

Analytical

model by

Caciagli et

al. [22]

Axial

component
0.33 4.6× 10−3 0.08× 10−3

Azimuthal

component
0.045 0.15 0.018

Radial

component
0.24 0.15 0.018

Total 0.615 0.3046 0.03608

Table 5. Comparison of the axial component of the magnetic field computed by the analytical model
derived in this paper and those of double integration form [29].

Computed

points K (r

mm, α◦,

z mm)

Analytical model in

this paper

Double integration

model [29]

(1, 30◦, 1) 2.157769964794315e+ 02 2.157769964794310e+02

(2, 60◦, 1) 6.708086824080323e+ 02 6.708086824080297e+02

(2, 90◦, 2) 2.090489643938749e+ 03 2.090489643938752e+03

(3, 60◦, 2) 1.642034971824546e+ 03 1.642034971824547e+03

(7, 45◦, 3) 1.285267148068441e+ 02 1.285267148068443e+02

(8, 45◦, 2) 64.672428644072369 64.672428644071971

(9, 0◦, 3) 0

−1.663901291691562e− 14

when the integration

increment increased to

square root of the minimum;

indefinite with the minimum

integration increment

error is up to 30%; this could be due to the mesh-based approach of the finite-element solver [22], for
example, the mesh could not be fine enough to yield exact results such as some nodes of the calculated
point were located in the negative field when the point is close to the centre of the cylinder. The
average error decreases to below 2% in the air space and it continues to decline with the increase of the
radial distances. In contrast, the model developed by Caciagli et al. [22] yields inaccurate result with
a minimum error of 39.1% and this error increases for the other field points inside the magnet and in
the air space. Figs. 4 and 5 show that using the derived analytical expressions, the average errors are
lower than 0.2% for the azimuthal and radial components inside the magnet. The errors increase for
the magnetic field close to the cylindrical surface of the magnet (r ≈ R), where a discontinuity of the
magnetic field is observed (Fig. 4(a) and Fig. 5(a), the discontinuity value of the radial component can
be calculated using Eq. (5a)). This is, however as mentioned before, due to the mesh-based approach
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Table 6. Comparison of the azimuthal component of the magnetic field computed by the analytical
model derived in this paper and those of double integration form [29].

Computed

points K (r

mm, α◦,

z mm)

Analytical model in

this paper

Double integration

model [29]

(1, 30◦, 1) 2.075341353118272e+ 03 2.075342030279546e+ 03

(2, 60◦, 1) 6.883383752352425e+ 03 6.883383655587118e+ 03

(2, 90◦, 2) 10000

10000 when the integration

increment increased to square

root of the minimum;

indefinite with the minimum

integration increment

(3, 60◦, 2) −9.414782387941905e+ 02 −9.414783284170040e+ 02

(7, 45◦, 3) −1.249742783341035e+ 02 −1.249742322552511e+ 02

(8, 45◦, 2) −97.645377896016626 −97.645374376110695

(9, 0◦, 3) −91.127178430913247 −91.127228807875156

Table 7. Comparison of the radial component of the magnetic field computed by the analytical model
derived in this paper and those of double integration form [29].

Computed

points K

(r mm, α◦,

z mm)

Analytical model in

this paper

Double integration

model [29]

(1, 30◦, 1) 3.254215441314990e+ 03 3.254090873644084e+ 03

(2, 60◦, 1) 5.171522650531067e+ 03 5.170893368858451e+ 03

(2, 90◦, 2) 6.548622537747931e+ 03 6.547984542927014e+ 03

(3, 60◦, 2) 2.665756882192566e+ 03 2.666260855598413e+ 03

(7, 45◦, 3) 1.951738642613515e+ 02 1.951864669091654e+ 02

(8, 45◦, 2) 1.772092192324710e+ 02 1.772204783074605e+ 02

(9, 0◦, 3) 0

−5.507071531793312e− 14

when the integration

increment increased to

square root of the minimum;

indefinite with the minimum

integration increment

of the finite-element solver [22]. The average errors of these components drop below 1.5% for the field
points in the air space and it keeps decreasing with the increase of the radial distances. On the other
hand, using the model by Caciagli et al. [22] produces a minimum error of 24.04% for the azimuthal
component and 2.6% for radial component and they go up for the other field points both inside the
magnet and in the air space. The inaccuracy of the model by Caciagli et al. [22] can be explained, as
in the derivation steps the magnetic scalar potential was approximately presented with the complete
elliptic integrals. Then, the final expressions were derived by taking derivatives of this scalar potential
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directly, which causes the error when using them to compute the magnetic field. Table 3 presents more
details about the maximum, average and minimum errors of the analytical model derived in this paper
and those by Caciagli et al. [22].

Evaluated in MATLAB R2016b with the minimum integration increment (double precision in
MATLAB), using the analytical expression derived in this paper, it took an average of 4.6 milliseconds
on a personal computer (with Processor Intel R⃝CoreTMi7-6700 CPU @ 3.40GHz 3.40GHz) to calculate
the axial component at a single location (2000 samples with random input variables). It took less than
0.2 seconds to compute the azimuthal and radial components. On the other hand, using the analytical
model by Caciagli et al. [22] in the same configuration, it took 0.08 milliseconds to calculate the axial
component and less than 0.02 seconds to compute the azimuthal and radial components. Even though
Caciagli’s analytical model computes slightly faster than the presented work in this paper, the results
of the presented work are far more accurate. Evaluated in MATLAB with the same configuration as
above mentioned, the double integration of the axial component (from Eq. (2)) took 0.33 seconds, the
double integration of the azimuthal component took 0.045 seconds and the double integration of the
radial component took 0.24 seconds (Table 4). This can demonstrate that the analytical model derived
in this study outperforms the double integration expression [29] in terms of the computational cost but
very close in terms of the calculated results in most of the randomly selected points (Tables 5, 6 and 7).

(b)(a)

Figure 3. Axial component of the magnetic field: (a) Magnetic field; (b) Error between the analytical
models and the FE model.

(b)(a)

Figure 4. Azimuthal component of the magnetic field: (a) Magnetic field; (b) Error between the
analytical models and the FE model.
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(b)(a)

Figure 5. Radial component of the magnetic field: (a) Magnetic field; (b) Error between the analytical
models and the FE model.

4. CONCLUSION

An exact analytical model to compute the magnetic field generated by a diametrically magnetised
cylindrical/ring shaped permanent magnet with a limited length, at any point in 3D space both inside
the magnet and in the air, is presented in this article. Based on geometrical and analytical analyses,
without any approximation in the derivation steps, the magnetic field is expressed analytically using the
complete elliptic integrals for its axial component and incomplete elliptic integrals for its azimuthal and
radial components. The total computational cost of the analytical model is lower than that of double
integration model while the two models are in very good agreement in terms of computed results. The
results of the developed analytical expressions are in good agreement with those using Finite Element
Analysis and far more precise than those obtained by Caciagli et al. [22].
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