Contact Us

What our clients say about us

HOME / Company / Testimonials
  • Jaromir Koniarski - Graduate Student
    Jaromir Koniarski - Graduate Student
    Silesian University of Technology

    The Silesian University of Technology (SUT) is one of the biggest universities of technology in Poland, with more than 60-years successful tradition in education, research and development as well as cooperation with industry. 

    The Faculties cover the whole range of engineering disciplines, as well as elements of management, sociology and administration. The number of students in all types of courses in the academic year 2013/2014 is about 27 000. Educational and research activities benefit from large number of modern lecture halls and advanced laboratories and are carried out by remarkable university staff consisting of over 1700 academic teachers including 300 professors and DSc degree holders.

    …”The installation of EMS for Inventor is very easy, it also has a lot of analysis options. The interface is intuitive and clear. EMS for Inventor allows for fast and accurate linkage analysis in the field of electro-thermal and magnetic as for the design of highly complex projects is very useful. EMS saves time and avoids the problems associated with the transformation of files between different programs - in this way we gain time, which in the case of very complex analysis is priceless. The Support Team of EMWorks is very professional and very helpful - if an error is detected; the reaction and giving solution is very fast…”

    Read PDF Document

  • Oleg Lyan and  Vincent Monet - Students
    Oleg Lyan and Vincent Monet - Students
    Klaipedos Universitetas

    In our bachelor thesis, a patented “bifilar” coil (BC) type permanent magnet generator (PMG) is constructed for scientific research. The features, working principle and elements of the BCPMG are analyzed.

    The BCPMG is developed from the iron-cored “bifilar” coil topology based on Aleksas Pašilis's and Eleonora Guseinovien's patent (Lithuania) in an attempt to overcome the problems with current rotary type Generators, which have so far been dominant on the market.

    One of the problems is Armature Reactance, which is usually bigger than Resistance.

    The circumstance creates difficulties for designers and operators of the Generator.

    "...That is why patented technology is offered to partially remove or absolutely neglect the reactance of the machine. We used The Simulation Software EMS:

    To get to the flow direction of the Magnetic Flux Densities through the system, which the same is as expected to be.

    To test to a real machine. We found the opportunity of the motion simulation, but there wasn't much time for that investigation.

    We have made only a 1/5 sector of the generator to keep the resources at minimum.

    We used also a Finite Element Magnetic Model (FEMM) to visualize the effects of the system.

    To visualize the effects of the 3 phase current to the flow of flux and densities on the system."


  • Stanley Chun Wee - Student
    Stanley Chun Wee - Student
    University of Western Australia


    "Thank you for giving me the opportunity to use the ElectroMagneticWorks add-in on SolidWorks. It has been amazing to experiment with.

    The simplicity and intuitiveness of the software made it a very rewarding experience when simulating my model for the purpose of writing my dissertation to which I have given full credit to EMS. Although it might seem intimidating to use at first, the tutorials proved to be the ultimate savior.

    I have truly learned a lot from this software. Knowledge that are taught in the book were only found to be true to a certain extent and it has gave me a new insight in dealing with electromagnetic designs which I have included in my dissertation.

    Keep up the good work."


  • Bhagwan Singh - Student
    Bhagwan Singh - Student
    Rice University

    Over the past year, I’ve had the opportunity to use EMWorks to aid in my study of magnetic coils on our apparatus. With this tool, we can model many types of coil designs, such as using thin magnet wire, and water cooling it, or instead going with hollow-core type of wiring (with finite diameters and realistic spiraling modeled in SW) and running cool water through that. We can then see our magnetic field profiles all around the coils, and of course in the center of our Helmholtz configuration, where we would like to ensure very flat magnetic fields. In a complex environment such as a cold-atom experiment, I want to ensure that the vacuum chamber geometry itself would not impede our ability to ramp up and down the current on the magnetic coils, due to eddy currents. By tuning the materials, and in real-time designing components the way they would be engineered, we will be able to fine-tune our apparatus to our needs and constraints. In the future, we will continue to evaluate the eddy currents present in our system as we try different parameters for our magnetic field control (see image).

    One great aspect to continue expanding on would be the video tutorials highlighting the many ways to get students started on using EMWorks for their applications. As a beginner, setting up the basic parameters like the “air geometry” was made simpler by watching someone show those steps specifically through SolidWorks.

    The image shows a cut-away view from our new vacuum chamber. We want to verify the compatibility of a new magnetic coil system with the chamber. )